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Abstract 8 

An online-coupled meteorology-chemistry model, WRF/Chem-MADRID, has been 9 

deployed for real time air quality forecast (RT-AQF) in southeastern U.S. since 2009.  A 10 

comprehensive evaluation of multi-year RT-AQF shows overall good performance for 11 

temperature and relative humidity at 2-m (T2, RH2), downward surface shortwave radiation 12 

(SWDOWN) and longwave radiation (LWDOWN), and cloud fraction (CF), ozone (O3) and fine 13 

particles (PM2.5) at surface, tropospheric ozone residuals (TOR) in O3 seasons (May-September), 14 

and column NO2 in winters (December-February).  Moderate-to-large biases exist in wind sped 15 

at 10-m (WS10), precipitation (Precip), cloud optical depth (COT), ammonium (NH4
+), sulfate 16 

(SO4
2-), and nitrate (NO3

-) at the IMPROVE and SEARCH networks, organic carbon (OC) at 17 

IMPROVE, and elemental carbon (EC) and OC at SEARCH, aerosol optical depth (AOD) and 18 

column carbon monoxide (CO), sulfur dioxide (SO2), and formaldehyde (HCHO) in both O3 and 19 

winter seasons, column nitrogen dioxide (NO2) in O3 seasons, and TOR in winter.  These biases 20 

indicate uncertainties in the boundary layer and cloud process treatments (e.g., surface 21 

roughness, microphysics cumulus parameterization), emissions (e.g., O3 and PM precursors, 22 

biogenic, mobile, and wildfire emissions), upper boundary conditions for all major gases and 23 

PM2.5 species, and chemistry and aerosol treatments (e.g., winter photochemistry, aerosol 24 

thermodynamics).  The model shows overall good skills in reproducing the observed multi-year 25 
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trends and inter-seasonal variability in meteorological and radiative variables such as T2, WS10, 26 

Precip, SWDOWN, and LWDOWN, and relatively well the observed trends in surface O3 and 27 

PM2.5, but relatively poor for column abundances of CO, NO2, SO2, HCHO, TOR, and AOD.  28 

The sensitivity simulation using satellite-constrained boundary conditions for O3 and CO shows 29 

substantial improvement for both spatial distribution and domain-mean performance statistics. 30 

The model’s forecasting skills for air quality can be further enhanced through improving model 31 

inputs (e.g., anthropogenic emissions for urban areas and upper boundary conditions of chemical 32 

species), meteorological forecasts (e.g., WS10, Precip) and meteorologically-dependent 33 

emissions (e.g., biogenic and wildfire emissions), and model physics and chemical treatments 34 

(e.g., gas-phase chemistry in winter conditions, cloud processes and its interactions with 35 

radiation and aerosol).  36 
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1. Introduction 44 

Real-time air-quality forecasting (RT-AQF) of the concentrations of pollutants of special health 45 

concerns such as ozone (O3) and fine particulate matter (PM2.5) provides a basis for early air 46 

quality alerts and preventative actions that reduce air pollution and protect human health. 47 

Increasing public awareness of adverse health impacts of ambient air pollution in both developed 48 

and developing countries and the availability of complex, deterministic three-dimensional (3-D) 49 

numerical models for RT-AQF have provided driving forces for the establishment and 50 
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advancement of RT-AQF. Despite substantial improvements of ambient air quality in major 51 

cities in many countries, the frequent occurrences of severe regional hazes in recent years in a 52 

number of countries such as China (e.g., Wang et al., 2014), India, and Singapore necessitate the 53 

continuous development and application of techniques for RT-AQF worldwide.  A number of 3-54 

D air quality models have been deployed for RT-AQF since the mid-1990s on global (e.g., 55 

Takigawa et al., 2007; Mangold  et al., 2011) and regional scales (e.g., Carmichael et al., 2003; 56 

McHenry et al., 2004; McKeen et al., 2005; 2010; Yu et al., 2007, 2008; Eder et al., 2010).  57 

Kukkonen et al. (2011) reviewed 18 regional scale RT-AQF models that are currently used in 58 

Europe, among which, 3 out 18 are online-coupled models. Zhang et al. (2012a, b) provided a 59 

comprehensive review of history, techniques, current status, and future research needs along with 60 

9 global and 36 regional RT-AQF models that are currently used in Australia, North America, 61 

South America, Europe, and Asia, among which, 4 out 9 global models and 5 out of 36 regional 62 

models are online-coupled models. Among those models, the 3-D RT-AQF models with coupled 63 

meteorology and chemistry such as the online-coupled Weather Research and Forecasting model 64 

with Chemistry (WRF/Chem) (Grell et al., 2005) are advanced tools for RT-AQF that can 65 

realistically represent the feedback mechanisms between meteorology and chemistry in the 66 

atmosphere. They, however, may not always outperform offline RT-AQF models, as there remain 67 

larger uncertainties in RT-AQF models than those originating from the feedback mechanisms, and 68 

not all RT-AQF models represent all feedback mechanisms that occur in the real atmosphere.  The 69 

strengths and limitations of online-coupled models have been reviewed in several papers (e.g., Zhang 70 

2008; Baklanov et al., 2014). 71 

Since May 2009, WRF/Chem with the Model of Aerosol Dynamics, Reaction, Ionization, 72 

and Dissolution (MADRID) (WRF/Chem-MADRID) (Zhang et al., 2010a, 2012c) has been 73 

deployed by the lead author’s group for RT-AQF in southeastern U.S. for ozone (O3) season 74 
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(May-September) and winter season (December-February) (Chuang et al., 2011; Yahya et al., 75 

2014a). The multi-year RT-AQF enables the assessment of the model’s capability and robustness 76 

in forecasting major pollutants as well as their inter-annual and inter-season variability, and 77 

multi-year trends with the long-term forecasting data.  In this work, multi-year forecasts of air 78 

quality and meteorology during 2009-2015 using WRF/Chem-MADRID are evaluated against 79 

surface and satellite-derived observations.  The objectives are to evaluate the model’s skill in 80 

forecasting the observed air quality and meteorology and their variation trends during 2009-2015 81 

and to identify areas of model improvements for more accurate meteorological and chemical 82 

forecasts.  83 

 84 

2. Model Description and Evaluation Protocol 85 

2.1 Model Description  86 

WRF/Chem-MADRID is an online-coupled meteorology and chemistry model.  It was 87 

developed based on WRF/Chem version 3.0 (Grell et al., 2005) and CMAQ-MADRID (Zhang et 88 

al., 2004) with updates in gas-phase chemistry and aerosol treatments by Zhang et al. (2010a, b, 89 

2012c).  WRF/Chem-MADRID treats all major aerosol processes such as the thermodynamic 90 

equilibrium for both inorganic and organic species, new particle formation, 91 

condensation/evaporation, coagulation, gas/particle mass transfer, dry and wet deposition. Unlike 92 

offline-coupled air quality models, WRF/Chem-MADRID simulates aerosol direct and semi-93 

direct feedbacks to photolysis, radiation, and planetary boundary layer (PBL) meteorology, as 94 

well as aerosol indirect effects on cloud and precipitation formation via many aerosol-cloud 95 

interaction processes. The physics and chemistry options used in this study follow those of 96 

Chuang et al. (2011) and Yahya et al. (2014a); they are kept the same for all forecasting periods 97 

since 2009.  The physics options include the cloud microphysics of Lin et al. (1983); the Rapid 98 
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Radiative Transfer Model (RRTM) of Mlawer et al. (1997) for longwave radiation; the Goddard 99 

scheme of Chou et al. (1998) for shortwave radiation; the Yonsei University (YSU) PBL scheme 100 

of (Hong et al. 2006); the National Center for environmental Prediction, Oregon State 101 

University, Air Force, Hydrologic Research Lab (NOAH) LSM (Chen and Dudhia, 2001); and 102 

the Grell-Devenyi ensemble cumulus parameterization (Grell and Devenyi, 2002). The chemistry 103 

and aerosol-related options chosen include the 2005 Carbon Bond gas-phase chemical 104 

mechanism (CB05) (Yarwood et al., 2005); the Carnegie-Mellon (CMU) bulk aqueous-phase 105 

chemical kinetic mechanism (Fahey and Pandis, 2001), the MADRID1 aerosol module with 8 106 

size sections over the PM aerodynamic diameter range of 0.025-11.630 µm of Zhang et al. (2004, 107 

2010a, b, 2012c), and the aerosol activation of Abdul Razzak and Ghan (2002).  A more detailed 108 

description of the model can be found in Chuang et al. (2011) and Yahya et al. (2014a).  109 

2.2 RT-AQF Deployment and Inputs 110 

The forecasting simulations are performed during the O3 and winter seasons at a horizontal grid 111 

resolution of 12 km over an area in southeastern U.S. including the states of Mississippi (MI), 112 

Alabama (AL), Georgia (GA), Florida (FL), South Carolina (SC), North Carolina (NC), 113 

Tennessee (TN), Kentucky (KY), Virginia (VA), West Virginia (WV), and Delaware (DE), as 114 

well as small portions of Louisiana (LA), Arkansas (AR), Missouri (MS), Illinois (IL), Indiana 115 

(IN), Ohio (OH), and Maryland (MD). The hourly and daily forecast products are provided at 116 

http://www.meas.ncsu.edu/aqforecasting/Real_Time.html.  This study analyzes forecast products 117 

during six O3 and winter seasons between May 1, 2009 and February 28, 2015. The National 118 

Center for Environmental Prediction’s (NCEP) meteorological forecast is downloaded at 7 p.m. 119 

(Local Standard Time) to initialize a 60-hr forecasting cycle using WRF/Chem-MADRID with 120 

12-hr spin-up and 48-hr forecasting. The anthropogenic emissions are based on the projected 121 

2009 emissions by the Visibility Improvement State and Tribal Association of the Southeast’s 122 
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(VISTAS) from the 1999 National Emission Inventories (NEI) version 2 based on historical 123 

growth factors and assumed control strategies (Barnard and Sabo, 2008). Those emissions vary 124 

hourly and account for seasonal variations. For biogenic emissions, offline biogenic emissions 125 

available from the VISTAS emissions were originally used for the RT-AQF during May 1, 2009 126 

and February 28, 2011.  The online biogenic emissions from the Model for Gases and Aerosols 127 

from Nature (MEGAN) version 2 have been used since December 2011.  Mineral dust emissions 128 

are simulated using online dust emission of Shaw (2008). 129 

The VISTAS 2009 36-km CMAQ simulation results and those from the previous day’s 130 

simulation are used to provide daily chemical boundary and initial conditions (BCONs and 131 

ICONs), respectively.  One-week spin up simulation is performed for the first day of the first 60-132 

hr forecasting cycle for each forecasting season.  133 

2.3 Evaluation Datasets and Protocols 134 

Zhang et al. (2012a) recommended both discrete and categorical evaluation for RT-AQF 135 

models, which are carried out for meteorological and chemical forecasts in this work. The PBL 136 

meteorological variables evaluated include temperature at 2-m (T2), relative humidity at 2-m 137 

(RH2), wind speed and direction at 10-m (WS10 and WD10), and daily precipitation (Precip).  138 

The chemical species evaluated include maximum 1-hr and 8-hr O3, carbon monoxide (CO), 139 

sulfur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), nitric acid (HNO3), 24-hr 140 

average PM2.5 and PM2.5 species such as ammonium (NH4
+), sulfate (SO4

2-), nitrate (NO3
-), 141 

elemental carbon (EC), organic carbon (OC) and total carbon (TC = EC+OC).  Given the low 142 

accuracy of anemometers at low wind speed conditions, the observed and simulated data pairs 143 

with the observed value below 0.771 m s-1 are excluded in the statistical calculation following 144 

Olerud et al. (2005). A number of surface networks are used for model evaluation, as 145 

summarized in Table S1 in the supplementary material.  These include the National Climatic 146 
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Data Center (NCDC), the AIRNow database, the Air Quality System (AQS), the Clean Air 147 

Status and Trends Network (CASTNET), the Interagency Monitoring of Protected Visual 148 

Environments (IMPROVE), the Speciated Trends Network (STN), and the Southern Aerosol 149 

Research and Characterization (SEARCH).  While AIRNow, AQS, and STN include primarily 150 

urban and suburban sites, and NCDC, CASTNET and IMPROVE include mainly rural and 151 

remote sites. NCDC and SEARCH includes both urban and rural sites in southeastern U.S.    152 

While 14 statistics defined in Zhang et al. (2006, 2012a) and Yu et al. (2006) are 153 

calculated against all surface network datasets in the discrete evaluation, the analysis in this 154 

study focuses on several commonly-used metrics including the mean bias (MB), normalized 155 

mean bias (NMB), the normalized mean error (NME), mean absolute gross error (MAGE), Root 156 

mean square error (RMSE), and correlation coefficient (R).  The discrete performance statistical 157 

criteria for chemical forecasts are based on Zhang et al. (2006) which recommended the use of 158 

NMBs ≤ 15% and NMEs ≤ 30% to indicate a satisfactory performance for O3 and PM2.5.  For 159 

meteorological variables, Tesche and Tremback (2002) suggested a good performance with MB 160 

≤ 0.5 m s-1 for WS10, MB ≤ 10 degrees and MAGE ≤ 30 degrees for WD10, and MB ≤ 0.5 K 161 

and MAGE ≤ 2 K for T2. However, such criteria were developed for meteorological simulations 162 

with data assimilation. Data assimilation is not used in this work because it masks the feedbacks 163 

between chemistry and meteorology. The model performance may not be as well as those with 164 

data assimilation. Brunner et al. (2014) evaluated meteorological simulations for the year of 165 

2010 from eight simulations of WRF version 3.4 with different combinations of physics options 166 

and found that the monthly MBs of T2 are within 2 K and MBs of WS10 are within 1.7 m s-1.  167 

The reported NMBs of Precip simulated by WRF range from -88% to 66% (e.g., Zhang et al., 168 

2010c; Yahya et al., 2014a, b, 2015a; Penrod et al., 2014).  NMBs within ±30% are considered to 169 

be acceptable performance for Precip.  Categorical statistics are calculated for the maximum 1-hr 170 
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and 8-hr O3 and 24-hr average PM2.5 against near-real time observations from AIRNow in terms 171 

of accuracy (A), critical success index (CSI), probability of detection (POD), bias (B), and false 172 

alarm ratio (FAR), as defined in Kang et al. (2005) and Zhang et al. (2012a). The threshold 173 

values are 80 ppb for the maximum 1-hr O3; 60 ppb for maximum 8-hr O3; and 15 µg m-3 for 24-174 

hr average PM2.5 following Chuang et al. (2011). For categorical evaluation, satisfactory 175 

performance would yield values close to 1 for A, CSI, and POD and a value close to 0 for FAR.  176 

For B, a value of 1 would indicate no bias, and a number greater than 1 means that the model 177 

forecasts more exceedances than observed, and vice versa.  In addition to domain-mean discrete 178 

and categorical statistics, the forecasted meteorological variables and chemical concentrations 179 

are evaluated using available observations in terms of domain-mean spatial distributions and site-180 

specific hourly variations.  The representative urban and rural sites selected include Atlanta, 181 

Georgia; Charlotte and Raleigh in North Carolina; Louisville, Kentucky; Birmingham, Alabama; 182 

and Jacksonville, Florida. 183 

In addition to surface evaluation, satellite data are used to assess the model’s capability in 184 

forecasting column values of meteorological, radiative, and chemical variables, as summarized in 185 

Table S1.  Such evaluations have not been previously performed for RT-AQF models. These 186 

include Precip from the Global Precipitation Climatology Project (GPCP), downward surface 187 

shortwave radiation (SWDOWN) and longwave radiation (LWDOWN) from the Cloud's and the 188 

Earth's Radiant Energy System (CERES), cloud fraction (CF), aerosol optical depth (AOD), and 189 

cloud optical depth (COT) from the Moderate Resolution Imaging Spectroradiometer (MODIS), 190 

tropospheric CO column abundances from the Measurements of Pollution in the Troposphere 191 

(MOPITT), tropospheric column abundances of NO2, formaldehyde (HCHO), and sulfur dioxide 192 

(SO2), as well as tropospheric ozone residuals (TOR) from the Ozone Monitoring Instrument 193 

(OMI)/ Microwave Limb Sounder (MLS). All satellite data used are level-3 monthly average 194 
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(except for column SO2, which is daily average because monthly average is not available) 195 

retrieval data that have been validated and quality assured by data providers (Martin, 2008). 196 

Following Zhang et al. (2009), the model outputs for all column variables except for TORs are 197 

vertically integrated up to the tropopause and averaged at the same satellite crossing time to 198 

generate the tropospheric amounts in order to match the satellite data.   Column variables are 199 

evaluated in terms of domain-mean discrete statistics and spatial distributions.  200 

 201 

3. Evaluation of Model Performance  202 

3.1 Evaluation of Meteorological Variables 203 

Meteorological forecasts are evaluated to understand their influence on chemical 204 

forecasts.  The meteorological performance for three O3 seasons and three winter seasons during 205 

May 1, 2009-February 28, 2012 has been evaluated in Yahya et al. (2014a). This study focuses 206 

on the evaluation of three O3 seasons and three winter seasons during May 1, 2012-February 28, 207 

2015. Table 1 summarizes domain-mean performance statistics for T2, RH2, WS10, and WD10 208 

against data from CASTNET, NCDC, and SEARCH, Precip against data from CASTNET, 209 

NCDC, and GPCP, SWDOWN and LWDOWN against CERES, and CF and COT against 210 

MODIS during these three O3 seasons and three winter seasons.   211 

3.1.1 Ozone Seasons   212 

MBs for T2 range from 0.5-2.1 °C, 0.6-1.8 °C, and 0.9-2.6 °C and MAGEs range from 213 

4.0-4.2°C, 3.7-4.0°C, and 3.9-4.7°C against data from CASTNET, NCDC, and SEARCH, 214 

respectively. The values of R for T2 range from 0.6-0.7 at CASTNET and NCDC, and 0.3-0.5 at 215 

SEARCH. Low R values at the SEARCH sites indicate possible compensation of large positive 216 

and negative biases at different sites.  While the MBs and MAGEs of T2 are larger than 0.5 K 217 

and 2 K, respectively, suggested by Tesche and Tremback (2002), they fall into the typical 218 
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ranges of MBs (< 2 °C) reported for this and newer versions of WRF and WRF/Chem in the 219 

literature (e.g., Brunner et al., 2014).  Moderate warm biases in T2 are mainly caused by 220 

moderate overpredictions in SWDOWN with NMBs of 14%, 17.6%, and 27.6%, and moderate 221 

underpredictions in CF with NMBs of -8.3%, -12.7%, and -14.5% at the CASTNET, NCDC, and 222 

SEARCH sites, respectively.  In this version of WRF, sub-grid cloud feedbacks to radiation are 223 

neglected in the cumulus parameterization, contributing in part to the overpredictions in 224 

SWDOWN (Alapaty et al., 2012).  Limitations in the surface layer and shortwave radiation 225 

schemes also contribute to the overpredictions in SWDOWN. The large underpredictions of 226 

COT with NMBs of -65.8% to -60.3% reflect the poor ability of the model in simulating cloud 227 

variables, due to the limitations in the parameterizations of cloud dynamics, thermodynamics, 228 

and microphysics, and interactions with aerosols (Zhang et al., 2012c, d, 2015). The model 229 

simulates LWDOWN well, with NMBs within 2%.   230 

The warm biases in T2 directly affect RH2 forecasts. Moderate underpredictions occur in 231 

RH2 with MBs of -16.4% to -9.7%, -14.6% to -6.9%, and -20.5% to -10.4%, at the CASTNET, 232 

NCDC, and SEARCH sites, respectively. The values of R of RH2 are lower, ranging from 0.2-233 

0.4 at all sites.  The model simulates WS10 at the NCDC sites well with MBs of 0.2-0.4 m s-1, 234 

MGAEs of 1.8 m s-1, and NMBs of 4.8-5.2%.  However, the model moderately or significantly 235 

overpredicts WS10 at the SEARCH and CASTNET sites with MBs of 0.3-0.9 m s-1 and 1.6-1.8 236 

m s-1, MAGEs of 1.2-1.3 m s-1 and 1.9-2.1 m s-1, and NMBs of 15.1-40.9% and 65.6-100.5%, 237 

respectively.  The MBs at all sites are generally within 1.7 m s-1 reported by Brunner et al. 238 

(2014) for simulations with WRF version 3.4 and at the NCDC sites they are even smaller than a 239 

performance indicator value of 0.5 m s-1 suggested by Tesche and Tremback (2002) for 240 

simulations with data assimilation.  Similar large overpredictions of WS10 by WRF have been 241 

reported by a number of studies (e.g., Penrod et al., 2014; Yahya et al., 2014a; Brunner et al., 242 
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2014). The WS10 overpredictions are due in part to unresolved surface roughness and 243 

topographical features by the surface drag parameterization used in WRF and in part to the use of 244 

coarse horizontal and vertical resolutions in the forecasting simulations (Cheng and Steenburgh, 245 

2005; Mass and Ovens, 2011).  Comparing to the NCDC sites that were carefully selected for 246 

meteorological measurements, the SEARCH and CASTNET sites were selected for air quality 247 

measurements, and many sites are difficult to be resolved at a spatial grid resolution of 12-km 248 

because of complex topography and surfaces.  MBs for WD10 range from 16.3-29.0°, 42.4-249 

47.9°, and 1.7-24.4° and MAGEs range from 79.1-86.2 °C, 85.1-86.1 °C, and 76.2-94.1°C 250 

against data from CASTNET, NCDC, and SEARCH, respectively.  The values of MBs and 251 

MAGEs are much higher than 10 and 30 degrees, respectively, suggested by Tesche and 252 

Tremback (2002), indicating a poor performance for WD10 that is partly because the data 253 

assimilation is not used and partly because the surface roughness and topographic features 254 

cannot be resolved.  The values of R for WD10 range from 0.6-0.7 at CASTNET and NCDC, 255 

and 0.3-0.6 at SEARCH. These results indicate certain limitations in the YSU PBL and the 256 

Monin-Obukhov surface layer schemes used in resolving main features of the PBL meteorology, 257 

particularly over complex terrain with uneven surface topography and mountainous regions (e.g., 258 

the Appalachian mountains). 259 

Precip is moderately to significantly overpredicted with NMBs of 52.0-56.2%, 34.4-260 

49.7%, and 29.8-54.6% against data from CASTNET, NCDC, and GPCP, respectively, they are 261 

mostly beyond the acceptable performance range of ±30%.  Similar large overpredictions of 262 

Precip by WRF or WRF/Chem have been reported in many studies (e.g., Caldwell et al., 2009; 263 

Zhang et al., 2010c, 2012c, d).  R values during the O3 seasons are low, ranging from ~0.0 to 0.4.  264 

Figure S1 in the supplementary material compares the spatial distributions of forecasted Precip 265 

with GPCP Precip in the O3 seasons.  The forecasted Precip is largely overpredicted over most 266 
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areas in the simulation domain. Such large biases and poor correlation can be attributed to three 267 

main reasons.   First, as reported by Zhang et al. (2010c), the Grell-Devenyi ensemble cumulus 268 

parameterization has a tendency to overpredict frequency and the intensity of afternoon 269 

convective rainfall.  Second, the Purdue Lin microphysics also has a tendency to overpredict 270 

cloud ice, graupel, and surface rainfall (Zhang et al., 2012d). Third, as reported in Alapaty et al. 271 

(2012), neglecting sub-grid cloud feedbacks to radiation in the cumulus parameterization can 272 

overpredict SWDOWN, resulting in unrealistically-large surface forcing for convection thus 273 

overpredictions in Precip.  Those limitations explain the predicted excessive convection and non-274 

convection rain.  While the warm biases in T2 and SWDOWN can lead to higher O3 and PM2.5, 275 

the positive biases in WS10 and Precip and the negative biases in CF and COT can lead to lower 276 

O3 and PM2.5. These effects may compensate each other in chemical forecasts.   277 

3.1.2 Winter Seasons   278 

The MBs for T2 in winter are larger than those in the O3 season in 2012 but smaller than 279 

those in the O3 seasons in 2013-2014 at the CASTNET and NCDC sites, with a range of 0.7-1.0 280 

°C and 0.8-1.2 °C, respectively.  The MB at the SEARCH sites is 1.1 °C during 2014-2015 281 

winter, but -5°C and -3 °C, respectively, in winters during 2012-2013 and 2013-2014.  During 282 

those winters, heavy snowfall occurred over a large areas in southeastern U.S., particularly 283 

during the record-cold winter in Jan-Feb., 2014.  The cold biases at the SEARCH sites indicate 284 

that the model tends to underestimate the snow melting rates in southeastern U.S. and the effects 285 

of urban heat island during winters.  RH2 are better forecasted in winters than in O3 season at all 286 

sites except for SEARCH during 2012-2013 and 2013-2014 winters during which large cold 287 

biases in T2 occur.  Similar to the O3 season, WS10 in winters is simulated well at the NCDC 288 

sites with MBs of 0.2-0.8 m s-1 but largely overpredicted at the CASTNET and SEARCH sites 289 

with MBs of 1.6-2.5 and 0.2-1.5 m s-1 because of the model’s limited capability in resolving 290 
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surface roughness and topographical features. WD10 forecasts are similar to those in the O3 291 

season at the CASTNET and NCDC sites but worse at the SEARCH sites with MBs of 15.9-292 

30.8°, 38.7-46.7°, and 22.2-46.6° and MAGEs of 89.8-98.3 °C, 92.8-97.5 °C, and 86.7-97.6°C 293 

against data from CASTNET, NCDC, and SEARCH, respectively.  Comparing to the O3 294 

seasons, MBs of Precip during winters are smaller at the NCDC sites but similar or slightly 295 

worse at other sites, with NMBs of 56.1-60.1%, 19.4-42.2%, 36.9-67.3% against data from 296 

CASTNET, NCDC, and GPCP, respectively.  As shown in Figure S1, the forecasted Precip is 297 

overpredicted in winters over most areas in the simulation domain. The spatial distributions of 298 

forecasted Precip with GPCP Precip correlate each other better in winter than in the O3 seasons, 299 

with higher R values of 0.2-0.7.  Similar to the O3 seasons, the model simulates well LWDOWN 300 

but moderately overpredicts SWDOWN in winters. Relatively larger underpredictions occur in 301 

CF, with NMBs of -23.9% to -18%, leading to slightly larger underpredictions in COT than those 302 

during the O3 seasons.  Comparing to the O3 seasons, the R values are generally higher for all 303 

meteorological variables except for CF and COT during winters, indicating that the model can 304 

better simulate the spatial/temporal variations of most meteorological variables during winters 305 

than in warm seasons.   306 

3.2 Discrete, Spatial, and Temporal Evaluation of Surface Chemical Forecasts 307 

The chemical performance during May 1, 2009-February 28, 2012 has been evaluated in 308 

Yahya et al. (2014a). Table 2 summarizes domain-mean performance statistics for chemical 309 

species at surface and chemical column abundances during three O3 seasons and three winter 310 

seasons during May 1, 2012-February 28, 2015.   311 

3.2.1 Ozone Seasons    312 

During the three O3 seasons in 2012-2014, as shown in Table 2a, the maximum 1-hr O3 313 

mixing ratios are well forecasted with NMBs within ±15% against data at AIRNow, AQS, 314 
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CASTNET, and SEARCH (except for SEARCH in 2013 where the NMB is 17%).  Maximum 8-315 

hr O3 mixing ratios are also well forecasted with NMBs within ±15% in 2012 and 2014 but 316 

slightly higher NMBs (15-22%) in 2013 at all sites.  Larger overpredictions in maximum 1-hr 317 

and 8-hr O3 mixing ratios in 2013 comparing to 2012 and 2014 may be caused by higher warm 318 

biases in T2 and greater overpredictions in NOx (indicated by NMBs of 36% for NO and 56% for 319 

NOx at the SEARCH sites). Higher T2 cause higher emissions of biogenic volatile organic 320 

compounds (BVOCs), which also contribute to higher O3 formation.  The high positive biases in 321 

NO2 and other trace gases such as CO and SO2 at the SAERCH sites may be caused by 322 

overestimation of their emissions and also the use of 12-km that cannot represent emissions at 323 

those sites. Pan et al. (2014) showed that the use of lower NOx emissions projected for 2012 than 324 

those in 2005 can reduce the positive bias in O3 forecast during July 2011.  Although NOx 325 

mixing ratios are also significantly overpredicted in 2014, smaller warm biases in T2 in 2014 326 

than in 2013, resulting in lower BVOCs emissions, and thus smaller O3 overpredictions. 327 

Although there are no observed BVOCs emissions and mixing ratios for evaluation, the NMBs 328 

of OCs are 15% in 2013 but 1% in 2014 and secondary organic aerosol (SOA) dominates OC in 329 

southeastern U.S., supporting higher BVOCs emissions and mixing ratios in 2013 than in 2014.  330 

Figure 1 (a) compares several discrete statistics of O3 against data from AIRNow for the six O3 331 

seasons during 2009-2015.  The MBs range from -2.8 to 6.9 ppb and -1.8 to 6.9 ppb for 332 

maximum 1-hr and 8-hr O3 mixing ratios, respectively. The highest and the second highest 333 

NMBs for the maximum 1-hr and 8-hr O3 mixing ratios occur in the O3 seasons in 2013 and 334 

2009, respectively, with NMBs of 15% and 17.0% in 2013 and 9.6% and 8.5% in 2009. The 335 

model’s skill in terms of NMEs, RMSEs, and R values is overall similar among all six O3 336 

seasons.  NMEs, RMSEs, and R values are 19.9-26.7%, 13.1-17.0 ppb, 40-60% for maximum 1-337 

hr O3, and 19.6 to 27.5%, 11.4-14.2 ppb, and 37.5-60% for maximum 8-hr O3. At sites from 338 
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other O3 measurement networks such as CASTNET, AQS, and SEARCH, the performance 339 

statistics for O3 in O3 seasons during 2012-2015 in this work are overall similar to those in 2009-340 

2012 shown in Yahya et al. (2014).  341 

Figure 2 shows forecasted maximum 1-hr and 8-hr O3 mixing ratios overlaid with all 342 

available observations during the three O3 seasons in 2012-2014. Figure S2 shows the 343 

corresponding spatial distributions of MBs. In 2013, the model overpredicts at many sites in NC, 344 

GA, KY, and AL when the observed maximum O3 mixing ratios were below 45 ppb, leading to 345 

the largest overpredictions among three O3 seasons and relatively low R values of 0.4-0.5. In 346 

2012, the model captures well the high O3 mixing ratios in MD, northern GA, eastern TN, 347 

western OH, northwestern WV, and regions along the border of IN and KY, although it tends to 348 

overpredict at some sites in NC, GA, and KY and underpredicts at some sites in IL, IN, and OH.  349 

The overpredictions and underpredictions of O3 at different sites over different time periods 350 

compensate, leading to relatively good R values of 0.5-0.6. In 2014, the observed O3 mixing 351 

ratios are slightly lower than 2012 and 2013, partially because only forecasted results from May-352 

July (MJJ) are averaged (Note that the results in August-September were lost due to the failure of 353 

backup drives containing such data). The model captures well the high O3 mixing ratios in NC 354 

(including the hot dots in western NC), GA, IN, KY, VA, although it underpredicts a few hot 355 

spots in MD and the border regions between OH and IN.  Similar spatial distributions and 356 

correlation are found for maximum 8-hr mixing ratios, despite slightly larger overpredictions at 357 

some sites in NC, VA, WV, GA, and AL in 2012, and at most sites in 2013.  Figure 3 compares 358 

forecasted and observed hourly O3 mixing ratios at the selected six urban sites.  The model 359 

reproduces well their observed diurnal and daily variations at all six sites in 2012 and MJJ 2014.  360 

Larger discrepancies are found at all cities, in particular, Birmingham, Atlanta, and Louisville.  361 
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As shown in Table 2a, forecasted PM2.5 concentrations agree very well with the 362 

observations from AIRNow with NMBs of -4% to 15% and from STN with NMBs of 9-12%, but 363 

moderately overpredicted at the IMPROVE and SEARCH sites, with NMBs of 8-25% and 39-364 

53%, respectively. The PM2.5 overpredictions are the results of overpredictions of SO4
2- and 365 

NO3
- (no observations of NH4

+ are available) at the IMPROVE sites, and SO4
2-, NO3

-, and NH4
+ 366 

at the SEARCH sites.  The overpredicted inorganic PM2.5 may be caused by overestimates in the 367 

emissions of precursors such as SO2, NOx, and NH3.  As shown in Table 2a, the SO2 and NO2 368 

mixing ratios at the SEARCH sites are significantly overpredicted with NMBs of 99-725% and 369 

49-56%, respectively.  The NO mixing ratios are also overpredicted by 36% and 222% in 2013 370 

and 2014, respectively. The large biases in those precursor gases indicate uncertainties in 371 

projected 2009 emissions that are used for RT-AQF during 2009-2015, in particular, such 372 

emissions do not reflect the continuous reductions in SO2 and NO2 emissions since 2009 as 373 

reported in several studies (e.g., Pan et al., 2014).  Warm biases in T2 at all sites also contribute 374 

to higher inorganic PM2.5 because of higher photochemical oxidation rates during the O3 seasons.  375 

Despite overpredictions in WS10 and Precip which tend to reduce PM2.5 concentrations, the 376 

impacts of overestimated precursor emissions and warm biases on PM2.5 formation dominate, 377 

leading to a net moderate PM2.5 overprediction at all sites.  Unlike IMPROVE, STN, and 378 

SEARCH, inorganic PM2.5 concentrations at the CASTNET sites are mostly underpredicted, 379 

likely due in part to the underestimates of anthropogenic of SO2, NOx, and NH3 at remote sites 380 

and national parks or the impact of their long-range transport from emissions at nearby 381 

urban/rural sites, and in part to the larger wet biases in Precip than at other sites, which 382 

scavenges more inorganic PM2.5 from the atmosphere at the CASTNET sites.  While the model 383 

simulates well EC, OC, and TC concentrations at the IMPROVE sites, it underpredicts EC, OC, 384 

and thus TC at the SEARCH sites.  Such differences are related to different site characteristics 385 
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(rural/remote sites in the IMPROVE network vs. urban/rural sites in southeastern U.S. in the 386 

SEARCH network) as well as possible underestimates of EC and OC emissions at the SEARCH 387 

sites during O3 seasons. 388 

Figure 1 (a) compares several discrete statistics of PM2.5 against data from AIRNow for 389 

the six O3 seasons during 2009-2015.  The MBs range from -1.3 to 1.4 µg m-3 and NMBs range 390 

from -10.1% to 14.7%, indicating a very good performance for PM2.5 for all six O3 seasons. The 391 

ranges of NMEs, RMSEs, and R values are 35.8-40.4%, 5.1-8.7 µg m-3, and 0.3-0.4, 392 

respectively.  The model’s skill in terms of NMEs, RMSEs, and R values is overall similar 393 

among all six O3 seasons at sites from AirNow, with slightly higher NMEs but lower RMSEs 394 

and R values than forecasted O3 during all six O3 seasons. Compared to the performance statistics 395 

for PM2.5 at sites from IMPROVE, STN, and SEARCH in O3 seasons during 2009-2011 shown in 396 

Yahya et al. (2014), those in O3 seasons during 2012-2014 are worse (particularly at SEARCH sites). 397 

Several reasons may contribute to the worse performance of PM2.5 during 2012-2014 than during 398 

2009-2011.  First, primary PM emissions and the emissions of PM2.5 precursors used in the 399 

simulations may be higher than actual emissions during those years (resulted from the use of the 400 

same emissions as 2009-2011). This leads to higher overpredictions for inorganic PM concentrations 401 

during 2012-2014 than during 2009-2011. Second, uncertainties may exist in the spatial allocations 402 

of these emissions in both seasons, leading to heterogeneity in model performance at sites from 403 

different networks.  This uncertainty may explain larger biases in EC and OC predictions during 404 

2012-2014 than during 2009-2011 at SEARCH sites in O3 season.  Third, T2 predictions show larger 405 

warm biases in O3 seasons during 2012-2014 than 2009-2011 at SEARCH sites, which favor the 406 

formation of (NH4)2SO4 and thus contribute to higher overpredictions in PM2.5 concentrations. As 407 

shown in Figures 2 and S2, forecasted PM2.5 concentrations agree well spatially with 408 

observations in all three O3 seasons, indicating that the relatively low R values may be mainly 409 
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due to mismatching between forecasted and observed hourly PM2.5 concentrations.  Such 410 

mismatching can be illustrated in Figure 4.  For example, in 2012, the model overpredicts PM2.5 411 

concentrations at Atlanta when observed concentrations were relatively low (e.g., July 9-412 

September 30, 2012), but underpredicts PM2.5 concentrations at Louisville when observed 413 

concentrations were relatively high (e.g., June 27-July 10, 2012).  In 2013, hourly PM2.5 414 

concentrations at Birmingham and Atlanta are largely overpredicted, contributing to large 415 

overpredictions and low R values of PM2.5 against data from SEARCH.  416 

3.2.2 Winter Seasons  417 

As shown in Table 2b and Figure 1(b), unlike the O3 seasons during which O3 mixing 418 

ratios are overpredicted in some years, the maximum 1-hr and 8-hr O3 mixing ratios are 419 

underpredicted in all winters during 2009-2015. The highest and the second highest NMBs for 420 

the maximum 1-hr and 8-hr O3 mixing ratio occur in the winter seasons in 2014-2015 and 2010-421 

2011, respectively, with NMBs of -18.1% and -17.7% in 2014-2015 and -11.9% and -13.5% in 422 

2010-2011.  The model’s skill in terms of NMEs, RMSEs, and R values is overall similar among 423 

all six winter seasons at sites from AirNow, with lower NMEs and RMSEs for both maximum 1-424 

hr and 8-hr O3 but lower R values for maximum 8-hr O3 than the O3 seasons.  At sites from other 425 

O3 measurement networks such as CASTNET, AQS, and SEARCH, the performance statistics for 426 

O3 in winter seasons during 2012-2015 in this work are also overall similar to those in 2009-2012 427 

shown in Yahya et al. (2014). Since T2 is moderately overpredicted at most sites during 2009-428 

2015, the O3 underpredictions are caused in part by large NOx underpredictions (e.g., an NMB of 429 

-67.2% for NO2 in 2014-2015).  Cai et al. (2008) evaluated the forecasting skills of an RT-AQF 430 

model that uses the CB4 gas-phase mechanism (which is an older version of CB05) and reported 431 

much significant underpredictions of OH and HO2 radicals at two sites in New York city during 432 

January 2004 compared to July 2004. They attributed such underpredictions to greater 433 
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uncertainties associated with the CB4 mechanism under low light and low temperature 434 

conditions.  Their analysis of the predicted and observed CO and NOx regression slopes also 435 

showed a much larger discrepancies between the two slopes in winter than in summer, indicating 436 

significant uncertainties associated with the 1999 NEI mobile emission inventories during winter 437 

time. In this work, the average observed and forecasted ratios of CO/NOx at the SEARCH sites 438 

for O3 seasons during 2012-2014 are 28.1 and 29.3, respectively.  Those for winters during 2012-439 

2015 are 17.1 and 25.0, respectively. The larger differences in the observed and forecasted ratios 440 

of CO/NOx indicate possibly larger uncertainties in mobile emissions in wintertime than warm 441 

seasons. As an example, Figure S3 shows the correlation plots for forecasted and observed CO 442 

and NOx at the SEARCH sites in the 2012 O3 season. The forecasted ratios of CO and NOx are 443 

higher than their observed ratios in both the 2012 O3 season and the 2012-2013 winter, with 444 

slightly larger differences between the two ratios in winter than in the O3 season. Those 445 

uncertainties associated with winter gas-phase chemistry of HOx radicals and emissions may also 446 

contribute to moderate underpredictions in O3 at all sites, and large biases in CO, SO2, and NOx 447 

at the SEARCH sites during winters. 448 

As shown in Table 2a, similar to the O3 seasons, forecasted PM2.5 concentrations during 449 

winters agree very well with the observations from AIRNow with NMBs of 0.8 to 8.3% and 450 

from STN with NMBs of 4.9-8.3%, but moderately overpredicted at the IMPROVE and 451 

SEARCH sites, with NMBs of 57.4-59.3% and 59.7-68.4%, respectively. Unlike the O3 seasons, 452 

the PM2.5 overpredictions are the results of overpredictions of OC with NMBs of 80.8-88.7% and 453 

EC with NMBs of 24.4-37.3% at the IMPROVE sites, and OC with NMBs of 24-33% and SO4
2- 454 

with NMBs of 16.3-24.7% at the SEARCH sites.  The concentrations of NO3
- are also 455 

moderately overpredicted with an NMB of 16.4% in 2013 at the SEARCH sites, contributing to 456 

PM2.5 overpredictions.  Overpredictions in both OC and EC lead to large overpredictions in TC 457 
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concentrations at the IMPROVE sites.  Moderate overpredictions in OC dominate over moderate 458 

underpredictions in EC, leading to moderate overpredictions in TC at the SEARCH sites.  Those 459 

results indicate possible overestimates of primary OC emissions at all types of sites and 460 

underestimates of EC emissions at urban/rural sites in southeastern U.S. in the SEARCH 461 

network during winter seasons. 462 

Figure 1(b) compares several discrete statistics of PM2.5 against data from AIRNow for 463 

the six winters during 2009-2015.  Similar to the O3 season, the model performs very well for 464 

PM2.5 for all six winter seasons with the NMBs ranging from -10.2% during 2010-2011 winter to 465 

8.3% during the 2012-2013 winter. As discussed in Yahya et al. (2014a), the underpredictions in 466 

2010-2011 winter are the results of underpredictions in inorganic PM2.5, due possibly to 467 

underestimates in the emissions of precursors such as SO2, NH3, and NOx during winters. Other 468 

possible reasons for underpredictions of PM2.5 during 2010-2011 include positive biases in both 469 

Precip and WS10.   Different from underpredictions in PM2.5 during 2009-2011 winter seasons at 470 

AirNow shown in Figure 1 (b) and STN shown in Yahya et al. (2014), the model overpredicts 471 

PM2.5 during 2012-2015 winter seasons at all sites from AirNow, STN, IMPROVE, and 472 

SEARCH, with larger absolute biases at IMPROVE and SEARCH sites than those during 2009-473 

2011 winter seasons. As discussed in Section 3.2.1, the inaccurate primary PM emissions and the 474 

emissions of PM2.5 precursors, as well as uncertainties in the spatial allocations of those emissions 475 

used in the simulations contribute to the worse performance of PM2.5 during winter seasons during 476 

2012-2015 than during 2009-2011.  Comparing to PM2.5 forecasts during the O3 seasons, the PM2.5 477 

forecasts during winters show slightly higher NMEs and R values and similar RMSEs.  478 

Comparing to O3 forecasts during the winter seasons, PM2.5 forecasts during winters show higher 479 

NMEs and R values but lower RMSEs.  As shown in Figure 2, the model captures well the 480 

seasonal variations of PM2.5, with higher PM2.5 concentrations during O3 seasons than during 481 
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winters. The model shows better spatial correlations with higher R values during winters than O3 482 

seasons.  In particular, the model reproduces several observed hot spots in GA, FL, MO, IN, 483 

MD, and LA during the 2012-2013, 2013-2014, and 2014-2015 winters (see Figure 2). As shown 484 

in Figure 4, the model reproduces well the observed hourly concentrations of PM2.5 at all sites 485 

except for Birmingham and Atlanta where overpredictions occur during all three winters.    486 

 487 

3.3 Categorical Evaluation of Surface Chemical Forecasts 488 

Figure 5 shows categorical evaluation of O3 and PM2.5 during all six O3 and winter 489 

seasons.  The accuracy is high for O3 forecasts during all six O3 and winter seasons, with A 490 

values of 94-97.7% during O3 seasons and 98.7-100% during winters.  High A values indicate 491 

higher percentage of forecasts that correctly predict an exceedance or a non-exceedance, with the 492 

number of non-exceedance dominating for both maximum 1-hr and 8-hr O3 mixing ratios.  493 

Because the observed and forecasted maximum 1-hr and 8-hr O3 mixing ratios during winters are 494 

below the threshold values of 80 ppb and 60 ppb, respectively, no values of CSI, POD, B, and 495 

FAR can be calculated.  During O3 seasons, the ranges of CSI values are 5.2-15.6 and 9.9-25.3 496 

for maximum 1-hr and 8-hr O3 mixing ratios, respectively.  The relatively low CSI values are 497 

caused by relatively high false alarm forecasts. Higher CSI values for maximum 8-hr O3 than 498 

maximum 1-hr O3 indicate a better skill in forecasting medium range of O3 mixing ratios during 499 

the daytime than the daily peak O3 mixing ratios.  For the same reason, the model gives higher 500 

POD values for maximum 8-hr O3 than for maximum 1-hr O3, with a range of 26.6-46.7 and 17-501 

31.3, respectively.  The model gives similarly low B values for both maximum 1-hr and 8-hr O3 502 

mixing ratios.  The ranges of B values are 0.6-7.9 and 0.6-4.2 for maximum 1-hr and 8-hr O3, 503 

respectively; they are greater than 1 in 2009, 2013, and 2014, indicating overpredictions in those 504 

years that are consistent with NMBs shown in Figure 1 (a).   The FAR values are high, ranging 505 
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from 67-96.1% and 48.6-88.9% for maximum 1-hr and 8-hr O3 mixing ratios, respectively. High 506 

FAR values indicate that a frequent occurrence of forecasted exceedance that did not occur.   507 

Comparing to O3 forecasts, the A values for PM2.5 forecasts are lower, ranging from 70.7-508 

83.2% for O3 seasons and 83.5-85.9% for winters, indicating that accurately forecasting PM2.5 is 509 

more challenging than forecasting O3.  The ranges of CSI values are 10.3-27.9% in O3 seasons 510 

and 14.8-22.2% in winters, which are slightly higher than those for O3 forecasts during most 511 

seasons. The POD values range from 15.3-40.1% in O3 seasons and 28.5-38.3% in winters, 512 

which are similar to those for O3 forecasts during O3 seasons.  B values for PM2.5 forecasts are 513 

smaller than those for O3 forecasts, ranging from 0.6-1.3 in O3 seasons and 0.7-1.2  in winters.  514 

FAR values for PM2.5 forecasts range from 44.6-75.9% in O3 seasons and 61.3-76.6% in winters.  515 

They are lower than FAR values of O3 forecasts during O3 seasons.   516 

3.4 Comparisons of Surface O3 and PM2.5 Forecasting Skill with Other RT-AQF Models 517 

Tables 3 and 4 compare the discrete and categorical performance evaluation for surface 518 

O3 and PM2.5 forecasting in this work with those reported over U.S. or a region in the U.S. in the 519 

literature. Note that those evaluations did not use the same threshold values and observational 520 

data for evaluation nor that they were performed over the same domain and forecasting period. 521 

The statistics against AIRNow only and against all datasets are provided for Yahya et al. (2014) 522 

and this work because all other evaluations were based on AIRNow. The two sets of 523 

performance statistics of max 1-hr and 8-hr O3 from WRF/Chem-MADRID in this work are 524 

within the range reported, with better performance based on AIRNow than most other models.  525 

For example, NMBs and NMEs of max 8-hr O3 from WRF/Chem-MADRID are -17.7% to 17% 526 

and 17.8-33.8%, compared to -2.1% to 25.2% and 18.6-30.4%, respectively, reported in the 527 

literature. The performance against AIRNow is better than those against all datasets in this work 528 

because the model performs worse when the data from the SEARCH sites are included.  For 24-h 529 
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PM2.5 evaluation using all datasets, while the MBs from this work fall into the reported range, the 530 

NMBs for the O3 season and the NMEs for the winter seasons slightly exceed the upper range of 531 

report values because of inclusion of all datasets in this work rather than AIRNow only as did in 532 

most other work.  Using AIRNow only for evaluation, the MBs, RMSEs, NMBs, NMEs for 24-h 533 

PM2.5 simulated by WRF/Chem-MADRID are -0.5 to 1.4, 5.1-5.7, -4 to 15%, and 36-40%, 534 

respectively, during the O3 seasons, and 0.2 to 0.8, 5.5-6.1, 0.8 to 8.3%, and 42.6-47.4%, 535 

respectively, during the winter seasons, which are smaller than corresponding values from most 536 

other models, namely, -3.2 to 6.2, 5.5-15.9, -21 to 32%, and 41.2-80%, respectively. As shown in 537 

Table 4, the model’s categorical performance for PM2.5 forecasts is comparable to or better than 538 

those reported in the literature.  The FAR values for max 8-h O3 during the O3 season are slightly 539 

beyond the reported range, because of a moderate overprediction in the 2013 O3 season.   540 

3.5 Discrete and Spatial Evaluation of Column Chemical Forecasts 541 

Table 2 also shows discrete statistics for column mass abundances of CO, NO2, SO2, and 542 

HCHO, TOR, and AOD during O3 seasons and winters during 2012-2015.  Column CO and SO2 543 

are moderately underpredicted with NMBs of -42.2% to -36.5% and -55.3% to -54.9%, 544 

respectively, in O3 seasons during 2012-2014.   The underpredictions are even larger in winter 545 

for both species, with NMBs of -50.7% to -48.2% and -77.2% to -73.2%, respectively.  As 546 

shown in Table 2a, the surface CO and SO2 mixing ratios are overpredicted at the SEARCH 547 

sites.  The overpredictions at surface but underpredictions in their column masses indicate 548 

inaccurate vertical profiles used in their boundary conditions.  For example, the BCONs of CO 549 

used in the forecasts vary from 72.5-96.4 ppb at the surface layer to 50-65 ppb in upper 550 

troposphere during July, and from 125-168 ppb at the surface layer to 50-65 ppb in upper 551 

troposphere during January.  The vertical profiles of CO derived from MOPPIT over the 552 

continental U.S. show a value of 105 ppb at surface and 65 ppb at the tropopause during summer 553 
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and a value of 125 ppb at surface and 68 ppb at the tropopause during winter (Zhang et al., 554 

2009). While the vertical profiles of CO used reflect the observed seasonal variations, the upper 555 

CO mixing ratios used are too low comparing to the MOPITT-derived CO levels in both seasons, 556 

and the surface CO mixing ratios are also low in O3 seasons, leading to moderate to significant 557 

underpredictions in column CO in O3 seasons and winters.  The BCONs of SO2 used in the 558 

forecasts vary from 0.04-1.35 ppb at the surface layer to 0.01-0.067 ppb in upper troposphere 559 

during July, and from 0.103-1.70 ppb at the surface layer to 0.01-0.067 ppb in upper troposphere 560 

during January.  Those values are also too low to represent BCONs over southeastern U.S.  561 

While column NO2 is moderately underpredicted with NMBs of -35.3% to -33.4% in the O3 562 

seasons, NMBs during winters are much smaller, ranging from -7.9% to 26.2%, indicating a 563 

more realistic vertical profile used in winters comparing that in O3 seasons. The BCONs of NO2 564 

used in the forecasts vary from 0.082-0.181 ppb at the surface layer to 0 ppb in upper 565 

troposphere during July, and from 0.316-4.23 ppb at the surface layer to 0-0.0057 ppb in upper 566 

troposphere during January.  Figure 6 (a) shows spatial distributions of column NO2, with overall 567 

good spatial correlation and R values of 0.7 and 0.9, in the 2012 O3 season and 2012-2013 568 

winter, respectively.  In addition to uncertainties in BCONs, inaccurate/missing emissions and 569 

inaccurate vertical allocations of emissions may contribute to the moderate to large 570 

underpredictions in column CO, SO2, and NO2.  For example, while wildfire and lightening NOx 571 

emissions are included, large uncertainties exist in their magnitudes and spatial distributions. 572 

Volcanic eruption and/or degassing may make important contribution to column SO2.   573 

Unlike column CO, SO2, and NO2, Column HCHO is moderately overpredicted with 574 

NMBs of 13.1-39.9% in O3 seasons but largely underpredicted with NMBs of -59% to -51.5% in 575 

winters.  The BCONs of HCHO used in the forecasts vary from 0.599-2.47 ppb at the surface 576 

layer to 0 ppb in upper troposphere during July, and from 0.292-0.404 ppb at the surface layer to 577 
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0 ppb in upper troposphere during January.   The performance statistics show that the BCONs of 578 

HCHO are too high in O3 seasons but too low in winters. Another possible source of errors in 579 

simulated column HCHO may come from inaccurate biogenic emissions of isoprene, which can 580 

produce secondary HCHO through its photochemical oxidation reactions. 581 

TOR is slightly-to-moderately underpredicted with NMBs of -15.4 to -4.5% in O3 582 

seasons but moderately overpredicted with NMBs of 29.9-45.1%.  The BCONs of O3 used in the 583 

forecasts vary from 26.3-44 ppb in July and from 22.8-39.1 ppb in January at the surface layer to 584 

100.5 ppb in upper troposphere during both months.   Although O3 can be formed through 585 

photochemical oxidations of precursor gases such as NOx, HCHO, and CO above the surface 586 

layer, the mixing ratios of those gases are generally low, particularly in mid-to-upper 587 

troposphere. Therefore, the column concentrations of O3 are regulated primarily by BCONs.  The 588 

performance statistics show that the BCONs of O3 are more realistic in O3 seasons than in 589 

winters during which the BCON values are too high to represent O3 vertical profile, leading to 590 

moderately overpredicted TOR.  AOD is moderately overpredicted with NMBs of 14.4% to 591 

47.6% in O3 seasons, and significantly overpredicted with NMBs of 59.4% to 95.7% in winters. 592 

The overpredictions of AOD are the results of overpredictions of PM2.5 at surface and also 593 

possible overpredictions of PM2.5 in upper layers, indicating that the BCONs used for PM2.5 594 

composition may be too high in both O3 and winter seasons. Figures 6 (a) and (b) show spatial 595 

distributions of TOR and AOD.  While forecasted TORs correlate well with OMI-derived TORs 596 

with an R value of 0.7 during the 2012 O3 season, they do not correlate in the 2012-2013 winter, 597 

indicating a need to adjust the vertical profile of O3 in winter.  The forecasted and MODIS-598 

derived AOD agree better spatially in the 2012-2013 winter than in the 2012 O3 seasons.  599 

 Two sensitivity simulations are performed to further study the importance of BCONs on 600 

column forecasts including a sensitive simulation during August 2012 using satellite-constrained 601 
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BCONs for CO and a sensitive simulation during December 2012 using satellite-constrained 602 

BCONs for O3. Those sensitivity simulations show large improvement in simulated column CO 603 

and TOR.  Figures 7 and 8 compare the spatial distributions of satellite-derived CO and TOR and 604 

the two simulations in August 2012 and December 2012, respectively. The use of satellite-605 

constrained BCONs for CO and TOR improves the simulated CO and TOR substantially. The 606 

MB, NMB, and NME of CO from the sensitivity simulation are -0.2, -10.6%, and 18.2%, 607 

respectively, comparing to -0.8, -40.6%, and 40.8% from the baseline simulation. The MB, 608 

NMB, and NME of TOR from the sensitivity simulation are -0.2, -0.01%, and 0.1%, 609 

respectively, comparing to 11.7, 44.8%, and 44.8% from the baseline simulation.  Similar 610 

improvements are expected for other column variables including column NO2 in O3 season and 611 

column SO2 and HCHO in both season. 612 

3.6 Trend analysis for multiple years 613 

Given interannual variability in climate and emissions, it is useful to assess the robustness 614 

of the model in forecasting the relative changes in terms of magnitudes and signs under different 615 

climate conditions, as well as the interannual variability from the year of reference.   616 

3.6.1 Meteorological Variables  617 

Figure 9 compares observed and simulated variation trends for T2, Precip, WS10, 618 

SWDOWN, LWDOWN, and CF.  Note that the trends for SWDOWN, LWDOWN, and CF are 619 

only plotted for the 2011-2014 O3 seasons and 2011-2015 winters because the upper layer model 620 

outputs during 2009-2010 were not available due to failures of backup drives containing such 621 

data.  The model forecasts well the observed changes in terms of both magnitudes and signs, as 622 

well as the interannual variability of T2 and WS10 in both O3 and winter seasons relative to their 623 

values in 2009.  It simulates reasonably well for the observed interannual variability of Precip at 624 

the CASTNET sites, but not well for the observed changes in magnitudes of Precip. The changes 625 
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in terms of magnitudes and signs as well as interannual variability relative to their values in 626 

2011-2012 for SWDOWN, LODOWN, and CF are well captured in winters, but in O3 seasons, 627 

while the model reproduces well both the magnitudes of the changes and the interannual 628 

variability of LWDOWN, and the interannual variability of SWDOWN and CF, it overpredicts 629 

the increases in SWDOWN but underpredicts the increases in CF.       630 

3.6.2 Chemical Variables 631 

   Figure 10 compares observed and simulated variation trends for surface O3 mixing ratios, 632 

surface PM2.5 concentrations, column mass abundances of CO, SO2, NO2, and HCHO, TOR, and 633 

AOD.  Note that the trends for column variables are only plotted for the O3 seasons during 2011-634 

2014 and winters during 2011-2015 for the aforementioned reason.  Relative to the 2009 O3 635 

season, the observed O3 mixing ratios from AIRNow are higher during O3 seasons in 2010-2012 636 

and 2014 but are lower in O3 season in 2013, this trend is not well captured by the model, as it 637 

forecasts slightly lower O3 in 2010 and 2014 O3 seasons, and slightly higher O3 in other O3 638 

seasons.  While PM2.5 forecasts during O3 seasons generally follow the observed trends, large 639 

differences occur in the magnitudes of the changes, with greater increases in 2010-2011 but 640 

greater decreases during 2012-2014.  Although the differences in the magnitude of the changes 641 

for forecasted O3 are smaller in winters than in O3 seasons, the observed and forecasted O3 642 

mixing ratios change in different directions, i.e., the observed O3 mixing ratios either increase or 643 

decrease slightly, the forecasted O3 mixing ratios continue to decline during 2010-2014 winters.  644 

The large differences in magnitudes and signs remain in forecasted and observed trends of PM2.5 645 

concentrations during winters comparing to O3 seasons, however, the forecasted and observed 646 

changes of PM2.5 concentrations are within ±10%.  The forecasted and observed changes in 647 

column CO are small, within 3% in O3 seasons and within 1% in winters but they have different 648 

signs. The forecasted column SO2 captures well the observed trends in magnitudes and signs for 649 
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column SO2 in the O3 seasons, larger differences exist in both magnitude and sign in winters. 650 

Although the forecasted and observed changes for column NO2 are generally within 10%, larger 651 

differences exist in magnitude and sign comparing to those for column CO and SO2.  The OMI-652 

derived TORs decrease in O3 seasons during 2012-2014, and increase during winters of 2012-653 

2013, 2013-2014, and 2014-2015.  Among all column gases, the forecasted column HCHO 654 

shows the largest differences in the O3 seasons in terms of both magnitude and sign.  655 

Uncertainties in satellite retrievals of column HCHO may contribute in part to such large 656 

discrepancies between forecasts and satellite-derived observations. For example, De Smedt et al. 657 

(2008) reported errors in HCHO retrievals of (0.5-2.0)× 1015 molecules cm-2, which are on the 658 

same order of magnitudes or even larger than the MBs in the forecasted HCHO column for all 659 

seasons. The differences in magnitude of the changes in column HCHO are smaller in winters 660 

but the signs are opposite in 2012-2013.   The forecasted TORs show a slight decrease in 2012 661 

O3 season and slight increases in 2013 and 2014 O3 seasons, and slight decreases in winters of 662 

2012-2013 and 2013-2014 as well as a slight increase in winter of 2014-2015.   663 

The forecasted AOD captures the decreasing trend during O3 seasons of 2012-2014, but 664 

with much smaller magnitudes of the changes (by up to 18% versus 40%, respectively).  While 665 

MODIS-derived AOD shows a large decrease (by up to 22%) from 2011-2012 winter, the 666 

forecasted AOD shows a large increase (by up to 23%) in winter.  The relatively large 667 

discrepancies between satellite-derived and forecasted column variables such as column NO2 and 668 

HCHO, TOR, and AOD in both O3 and winter seasons, and column SO2 in winters indicate a 669 

need to adjust the vertical profiles of these gases and PM composition in the BCONs.    670 

 671 

Summary and Conclusion 672 
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An online-coupled meteorology-chemistry model, WRF/Chem-MADRID, has been 673 

deployed for RT-AQF in southeastern U.S. since 2009 for six O3 seasons and six winters.  A 674 

comprehensive evaluation of meteorological and chemical forecasts is performed using surface 675 

and satellite-derived observations in terms of spatial distribution, temporal variation, and discrete 676 

and categorical performance statistics.  The meteorological evaluation shows moderate to large 677 

biases for T2, RH2, WS10, WD10, Precip, SWDOWN, CF, and COT, indicating some 678 

limitations in the YSU PBL scheme, the Monin-Obukhov surface layer scheme, the Purdue Lin 679 

cloud microphysics module, and the Grell-Devenyi ensemble scheme.  In particular, 680 

uncertainties exist in the model treatments of PBL processes (e.g., inaccurate representations of 681 

surface drag), the dynamics, thermodynamics, and microphysics of clouds, as well as aerosol-682 

radiation-cloud-precipitation interactions (e.g., the missing treatments of sub-grid cloud 683 

feedbacks to radiation).  Since the forecasts do not use data assimilation, the agreement between 684 

meteorological forecasts and observations is not expected to be comparable with the simulations 685 

that use data assimilation.  The meteorological forecasts for most variables except for WS10, 686 

Precip, and COT in this work are therefore deemed to be acceptable.  While updating 687 

WRF/Chem-MADRID based on the latest WRF/Chem version should help reduce some of those 688 

uncertainties with updated schemes and treatments, continuous development and improvement of 689 

PBL schemes and cloud parameterizations are important future work to improve meteorological 690 

forecasts, which will in turn improve chemical forecasts.      691 

WRF/Chem-MADRID shows consistently good skills for O3 and PM2.5 forecast in terms 692 

of both categorical and discrete statistics during 2009-2015. It performs well in both O3 and 693 

winter seasons with most NMBs within ±15% for O3 forecasts against observations from 694 

AIRNow, AQS, CASTNET, and SEARCH. The NMBs for PM2.5 forecasts are within ±15% 695 

against observations from AIRNow and STN, but larger (up to ±68%) against observations from 696 
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IMPROVE and SEARCH.  Larger biases are also found for secondary PM2.5 against surface 697 

observations at IMPROVE and SEARCH, and also for some column variables (e.g., column NO2 698 

in O3 seasons, TOR, column HCHO, and AOD in winters, and COT and column CO and SO2 in 699 

both O3 and winter seasons) against satellite data. These biases are due possibly to uncertainties 700 

in simulated meteorology (e.g., T2, Precip, and WS10), emissions (e.g., biogenic/wildfire 701 

emissions and winter mobile emissions), and BCONs (e.g., inaccurate BCONs for seasonal and 702 

inter-annual variations for CO, NO2, SO2, O3, HCHO, and PM2.5 composition), as well as 703 

limitations in chemical and aerosol treatments (e.g., the production of OH radicals from CB05 in 704 

winter, aerosol thermodynamic partitioning, and SOA formation).  Comparison of model 705 

performance during 2012-2015 with that during 2009-2012 shows that the inaccurate primary PM 706 

emissions and the emissions of PM2.5 precursors, as well as uncertainties in the spatial allocations of 707 

those emissions used in the simulations contribute to the worse performance of PM2.5 during both O3 708 

and winter seasons during 2012-2015 than during 2009-2012.   709 

Despite those biases, the model’s performance in terms of surface O3 and PM2.5 forecasts 710 

is overall consistent with or better than the performance of other RT-AQF models reported in the 711 

literature for different periods over different domains. Although the model shows overall good 712 

skills for meteorological and chemical forecasts at the surface, inaccurate representations of 713 

species vertical profiles can potentially affect both meteorological and chemical forecasts at the 714 

surface because of turbulent mixing and convective cloud updraft and downdraft movements and 715 

because of the feedbacks of radiative species (e.g., O3, NO2, HCHO, and PM composition) to the 716 

radiation calculation in the model.  The impacts of chemical BCONs on air quality simulations 717 

have been shown in several studies (e.g., Giordano et al., 2015; Yahya et al., 2015b) and in this 718 

work. Therefore, the vertical profiles of BCONs of those species should be constrained with 719 

satellite-derived observations to more realistically represent vertical and seasonal variations. 720 
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Forecasted changes in most meteorological variables except for CF generally reproduce 721 

well the observed trends in terms of magnitude and sign and interannual variability. While small 722 

changes occur in observed seasonal-mean maximum 1-hr and 8-hr O3 concentrations from 723 

AIRNow since 2009, those for PM2.5 show greater decreases and stronger inter-annual 724 

variabilities than O3, reflecting the effects of emission reductions since 2009. Forecasted O3 725 

levels show weaker inter-annual variabilities than observed O3 levels during all O3 and winter 726 

seasons. Forecasted PM2.5 levels resemble their observed increasing trends from 2009 to 2011 727 

and declining trend from 2011 to 2014 during O3 seasons and remain nearly constant during 728 

winter. Such variabilities are mainly attributed to changes in meteorology and meteorology-729 

dependent biogenic and wildfire emissions.  Largest discrepancies are found in the forecasted 730 

and observed changes in AOD and column gases including CO, NO2, SO2, HCHO, and O3, due 731 

mainly to inaccurate representations of the vertical profiles of the BCONs of those gases and PM 732 

composition.  More accurate meteorological forecasts, anthropogenic emissions, and 733 

meteorology-dependent emissions (e.g., biogenic, wildfire, and volcanic), upper BCONs for 734 

chemical species, and model treatments of chemical and aerosol processes should improve the 735 

model’s ability in reproducing not only the observations but also the interannual and inter-736 

seasonal variation trends in terms of magnitude and sign for major chemical species of concerns.      737 

When resources become available, several limitations in this work should be addressed.  738 

These may include the code migration of WRF/Chem-MADRID into the latest version of 739 

WRF/Chem, the refinement of configurations using available latest physics and chemistry 740 

options (e.g., the use of urban canopy model, updated surface roughness treatments, and the 741 

multi-scale cumulus parameterization), and updates in emissions and lateral BCONs including 742 

using real-time forecasted emissions, and more realistic BCONs derived from satellite retrievals 743 

or dynamic BCONs from a validated global RT-AQF model.  744 
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Variable Network 

3  

2012 2013 20141 

Mean 
Obs2 

Mean 
Sim Corr MB MAGE 

Mean 
Obs 

Mean 
Sim Corr MB MAGE 

Mean 
Obs 

Mean 
Sim Corr MB MAGE 

T2 (°C) 

CASTNET 22.2 22.8 0.6 0.5 4.2 21.2 23.3 0.7 2.1 4.0 21.2 23.3 0.7 2.1 4.0 

NCDC 23.7 24.3 0.6 0.6 4.0 23.0 24.8 0.7 1.8 3.7 22.9 24.7 0.7 1.7 3.9 

SEARCH 24.9 25.8 0.4 0.9 4.0 24.1 26.7 0.5 2.6 3.9 23.5 25.6 0.3 2.1 4.7 

RH2 (%) 

CASTNET 76.3 66.5 0.3 -9.8 17.5 78.2 61.8 0.3 -16.4 20.3 74.3 60.5 0.4 -13.8 18.6 

NCDC 74.4 67.5 0.3 -6.8 17.8 78.5 64.0 0.3 -14.4 19.6 74.1 60.6 0.4 -13.5 20.0 

SEARCH 74.0 63.5 0.3 -10.4 18.5 80.1 59.6 0.2 -20.5 23.2 74.5 54.7 0.3 -19.7 23.1 

WS10  
(m s-1) 

CASTNET 2.0 3.7 0.4 1.7 1.9 1.8 3.7 0.2 1.8 2.1 2.5 4.1 0.4 1.6 2.1 

NCDC 3.6 3.8 0.2 0.2 1.8 3.6 3.9 0.2 0.4 1.8 3.7 3.9 0.2 0.2 1.8 

SEARCH 2.2 3.1 0.3 0.9 1.3 2.1 2.7 0.3 0.6 1.2 2.2 2.5 0.2 0.3 1.2 

WDR10 
(°) 

CASTNET 201.8 224.8 0.7 23.0 79.1 207.2 223.5 0.7 16.3 86.2 195.6 224.7 0.6 29.0 85.7 

NCDC 186.5 232.1 0.7 45.6 85.2 187.3 235.2 0.7 47.9 85.1 199.4 241.9 0.6 42.4 86.1 

SEARCH 200.7 219.5 0.6 18.9 83.0 206.0 230.5 0.4 24.4 94.3 224.4 226.1 0.3 1.7 76.2 

Precip 
 (mm hr -1) 

CASTNET 0.2 0.3 0.0 0.1 0.4 0.2 0.3 0.0 0.1 0.5 0.2 0.3 0.0 0.1 0.4 

NCDC 3.2 4.7 0.0 1.5 5.3 2.8 4.1 0.0 1.4 4.6 3.2 4.3 0.1 1.1 4.9 

GPCP 0.2 0.3 0.4 0.1 0.1 0.2 0.3 0.4 0.1 0.1 0.2 0.2 0.1 0.0 0.1 

SWDOWN 
(W m-2) CERES 245.2 279.7 0.6 34.4 34.5 239.7 281.9 0.1 42.2 42.2 244.2 311.5 0.4 67.3 67.3 

LWDOWN 
(W m-2) 

CERES 399.9 391.0 1.0 -8.9 11.9 397.8 398.5 1.0 0.7 4.4 398.6 390.5 1.0 -8.1 8.1 

CF (W m-2) MODIS 57.8 53.0 0.9 -4.8 6.4 64.4 56.2 0.8 -8.2 9.1 66.6 57.0 0.6 -9.6 10.8 

COT MODIS 14.2 5.4 0.3 -8.8 8.8 14.9 5.9 -0.1 -9.0 9.0 13.5 4.6 0.1 -8.9 8.9 

 
Table 1b. Discrete statistics of meteorological variables for winter seasons. 

Variable Network 

Winter  Season (December-February)  

2012-2013 2013-2014 2014-2015 

Mean 
Obs2 

Mean 
Sim 

Corr MB MAGE  Mean 
Obs 

Mean 
Sim 

Corr MB MAGE Mean 
Obs 

Mean 
Sim 

Corr MB MAG
E 

T2 (°C) 

CASTNET 5.7 6.7 0.9 1.0 3.5 3.3 4.3 0.9 0.9 3.6 2.8 3.5 0.9 0.7 3.7 

NCDC 8.1 9.3 0.8 1.2 3.7 6.2 7.4 0.9 1.2 3.7 5.6 6.4 0.8 0.8 3.7 

SEARCH 10.1 5.2 0.4 -5.0 8.7 7.9 5.0 0.1 -3.0 7.6 10.0 11.1 0.6 1.1 4.0 

RH2 (%) 

CASTNET 75.0 69.0 0.4 -6.0 15.9 72.0 70.1 0.4 -1.9 15.9 74.2 70.2 0.4 -4.1 15.1 

NCDC 76.3 70.4 0.4 -6.0 16.0 74.1 69.9 0.4 -4.2 16.0 74.0 69.7 0.5 -4.3 15.1 

SEARCH 73.3 59.5 0.4 -13.9 21.5 73.7 61.6 0.4 -12.1 21.4 79.2 72.9 0.2 -6.3 16.2 

WS10  
(m s-1) 

CASTNET 2.4 5.0 0.3 2.5 2.8 2.9 4.9 0.2 1.9 2.5 2.9 4.5 0.2 1.6 2.4 

NCDC 4.3 5.1 0.3 0.8 2.4 4.2 4.8 0.2 0.6 2.3 4.2 4.4 0.2 0.2 2.2 

SEARCH 2.5 4.1 0.6 1.5 1.7 2.4 3.9 0.5 1.4 1.7 2.3 2.5 0.3 0.2 1.1 

WDR10 
(°) 

CASTNET 201.2 217.1 0.5 15.9 91.5 208.4 237.2 0.7 28.8 89.3 212.3 243.1 0.6 30.8 99.8 

NCDC 206.8 245.6 0.6 38.7 96.9 207.8 253.3 0.7 45.5 92.8 209.7 256.4 0.7 46.7 97.5 

SEARCH 212.7 247.9 0.8 35.2 94.1 206.7 228.9 0.8 22.2 97.6 212.2 258.8 0.9 46.6 86.7 

Precip 
 (mm hr -1) 

CASTNET 0.1 0.2 0.1 0.1 0.3 0.1 0.2 0.2 0.1 0.2 0.1 0.1 0.3 0.1 0.2 

NCDC 1.9 2.7 0.1 0.8 2.7 1.9 2.5 0.1 0.6 2.4 1.8 2.2 0.1 0.4 2.2 

GPCP 0.1 0.2 0.7 0.1 0.1 0.1 0.2 0.4 0.1 0.1 0.1 0.2 0.5 0.0 0.1 

SWDOWN 
(W m-2) 

CERES 118.8 142.4 0.9 23.5 23.7 119.5 141.7 0.9 22.2 22.2 118.4 146.7 0.9 28.4 28.4 

LWDOWN 
(W m-2) CERES 323.4 320.3 1.0 -3.2 4.1 314.2 318.3 1.0 4.1 5.5 314.3 312.1 1.0 -2.1 3.8 

CF (W m-2) MODIS 64.4 50.0 0.7 -14.4 14.4 64.4 52.8 0.5 -11.6 11.7 65.8 50.0 0.8 -15.7 15.7 

COT MODIS 17.8 5.4 0.2 -12.3 12.3 18.8 5.6 0.2 -13.2 13.2 18.2 4.9 0.1 -13.3 13.3 
1 Data pairs only include simulated and observed data during May, June, and July in 2014 because of loss of simulated data in August and 
September, 2014 due to failure of backup external hard drives containing such data.  

2 Mean Obs: Mean observed data; Mean Sim: Mean simulated data; Corr: Correlation coefficient; MB: Mean bias; MAGE: Mean Absolute Gross 
Error; N/A: Data not available.
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Variable Network 

3  

2012 2013 20141 

Mean 
Obs2 

Mean 
Sim Corr 

NMB 
(%) 

NME 
(%) 

Mean 
Obs 

Mean 
Sim Corr 

NMB 
(%) 

NME 
(%) 

Mean 
Obs 

Mean 
Sim Corr 

NMB 
(%) 

NME 
(%) 

CO (ppb) SEARCH 161.6 267.1 0.4 65.3 97.1 177.9 264.2 0.3 48.5 75.5 178.5 322.7 0.4 80.8 99.8 

SO2 (ppb) SEARCH 1.0 1.9 0.0 99.0 195.0 0.5 1.9 0.1 308.0 362.0 0.3 2.8 0.3 725.0 736.0 

NO (ppb) SEARCH 1.9 1.4 0.1 -26.0 135.0 1.2 1.6 0.2 36.0 176.0 1.5 4.9 0.1 222.0 339.0 

NO2 (ppb) SEARCH 4.6 6.8 0.4 49.0 119.0 4.1 6.4 0.4 56.0 118.0 5.1 8.0 0.5 56.0 120.0 

HNO3 (ppb) SEARCH 0.3 0.5 0.1 50.5 124.3 0.3 0.4 0.1 57.0 119.0 0.3 0.4 0.1 23.0 95.0 

Max 1-hr O3 
(ppb) 

AIRNow 52.5 52.4 0.5 0.0 22.0 45.6 52.4 0.5 15.0 26.0 49.1 49.1 0.4 0.0 23.0 

AQS 52.4 52.1 0.6 -1.0 22.0 45.6 51.1 0.5 12.0 26.0 N/A N/A N/A N/A N/A 

CASTNET 51.3 49.8 0.5 -3.0 22.0 46.3 52.0 0.4 12.0 25.0 50.5 51.0 0.4 1.0 19.0 

SEARCH 53.3 55.8 0.6 5.0 21.0 46.3 54.4 0.5 17.0 27.0 48.3 50.2 0.5 4.0 24.0 

Max 8-hr O3 
(ppb) 

AIRNow 47.4 47.5 0.5 0.0 22.0 41.0 47.9 0.4 17.0 27.0 44.5 45.0 0.4 1.0 23.0 

AQS 46.8 46.5 0.5 -1.0 22.0 40.3 46.4 0.5 15.0 27.0 N/A N/A N/A N/A N/A 

CASTNET 45.8 45.1 0.5 -2.0 23.0 37.1 43.6 0.3 18.0 28.0 40.3 41.7 0.3 4.0 20.0 

SEARCH 47.3 49.7 0.6 5.0 21.0 40.7 49.5 0.6 22.0 29.0 43.0 45.7 0.5 6.0 26.0 

24-hr Avg 
PM2.5 

(µg m-3) 

AIRNow 10.8 11.0 0.3 2.0 38.0 9.8 11.2 0.4 15.0 40.0 10.2 9.7 0.3 -4.0 36.0 

IMPROVE 7.7 9.6 0.3 25.0 44.0 7.6 9.5 0.4 25.0 44.0 8.0 8.6 0.4 8.0 33.0 

STN 11.1 12.0 0.3 9.0 38.0 10.4 11.7 0.4 12.0 39.0 N/A N/A N/A N/A N/A 

SEARCH 9.8 13.6 0.2 39.0 66.0 9.1 13.9 0.3 53.0 74.0 N/A N/A N/A N/A N/A 

NH4
+ 

(µg m-3) 

CASTNET 0.8 0.8 0.6 -7.0 29.0 0.8 0.8 0.8 -4.0 25.0 0.7 0.6 0.5 -12.0 29.0 

IMPROVE -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

STN 0.5 0.9 0.4 64.0 88.0 0.5 0.8 0.4 58.0 87.0 N/A N/A N/A N/A N/A 

SEARCH 0.8 0.9 0.2 6.0 62.0 0.7 0.8 0.3 14.0 65.0 N/A N/A N/A N/A N/A 

SO4
2- 

(µg m-3) 

CASTNET 2.6 2.5 0.4 -3.0 29.0 2.4 2.6 0.5 6.0 27.0 2.3 2.1 0.2 -9.0 25.0 

IMPROVE 2.1 2.4 0.3 18.0 47.0 2.0 2.4 0.4 16.0 49.0 1.9 2.1 0.4 10.0 40.0 

STN 2.2 2.6 0.3 16.0 46.0 2.1 2.6 0.4 20.0 51.0 N/A N/A N/A N/A N/A 

SEARCH 2.3 2.9 0.2 29.0 66.0 2.1 3.0 0.3 41.0 72.0 N/A N/A N/A N/A N/A 

NO3
- 

(µg m-3) 

CASTNET 0.4 0.3 0.5 -18.0 62.0 0.3 0.2 0.6 -32.0 60.0 0.4 0.2 0.6 -48.0 67.0 

IMPROVE 0.2 0.3 0.3 54.0 130.0 0.2 0.3 0.3 47.0 136.0 0.2 0.3 0.3 25.0 135.0 

STN 0.4 0.4 0.3 -8.0 89.0 0.4 0.3 0.3 -24.0 83.0 N/A N/A N/A N/A N/A 

SEARCH 0.2 0.3 0.0 48.0 207.0 0.2 0.3 0.0 83.0 233.0 N/A N/A N/A N/A N/A 

EC 
(µg m-3) 

IMPROVE 0.2 0.2 0.3 0.0 54.0 0.2 0.2 0.5 5.0 54.0 0.2 0.2 0.2 1.0 54.0 

SEARCH 1.5 0.5 -0.1 -67.0 88.0 0.9 0.5 0.0 -40.0 82.0 N/A N/A N/A N/A N/A 

OC 
(µg m-3) 

IMPROVE 1.3 1.9 0.3 50.0 73.0 1.2 1.3 0.1 15.0 60.0 1.2 1.2 0.1 1.0 56.0 

SEARCH 3.0 2.9 0.2 -6.0 57.0 2.2 1.6 0.2 -28.0 61.0 N/A N/A N/A N/A N/A 

TC 
(µg m-3) 

IMPROVE 1.5 2.2 0.3 42.0 66.0 1.4 1.6 0.2 14.0 57.0 1.4 1.5 0.1 1.0 54.0 

STN 2.8 2.7 0.5 -3.0 37.0 2.7 2.0 0.1 -27.0 46.0 N/A N/A N/A N/A N/A 

SEARCH 2.3 3.0 0.3 30.0 89.0 3.0 2.1 0.3 -29.0 53.0 N/A N/A N/A N/A N/A 

Column CO 
(1018 molec. 

cm-2) 
MOPITT 2.1 1.2 0.5 -42.2 42.2 2.0 1.3 0.5 -36.5 36.5 2.0 1.3 0.3 -37.2 37.2 

Column NO2 

(1015 molec. 
cm-2) 

OMI 1.7 1.1 0.7 -35.3 45.9 1.6 1.1 0.7 -33.4 42.9 1.7 1.1 0.7 -33.5 40.8 

Column SO2 

(DU) OMI 0.25 0.11 0.5 -54.9 59.2 0.25 0.11 0.5 -55.1 58.8 0.25 0.11 0.4 -55.3 58.7 

Column 
HCHO  (1015 
molec. cm-2) 

OMI 8.6 9.8 0.8 13.1 31.8 7.6 10.7 0.8 39.9 52.4 8.2 9.2 0.7 13.2 35.3 

Column O3 

(DU) OMI 39.4 33.3 0.7 -15.4 16.8 38.0 36.0 0.6 -5.3 9.0 37.6 35.9 0.7 -4.5 8.1 

AOD MODIS 0.2 0.2 0.0 14.4 23.6 0.1 0.2 -0.4 47.6 48.4 0.1 0.2 -0.2 37.2 43.8 
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Variable Network 

  

2012-2013 2013-2014 2014-2015 

Mean 
Obs2 

Mean 
Sim Corr 

NMB 
(%) 

NME 
(%) 

Mean 
Obs 

Mean 
Sim Corr 

NMB 
(%) 

NME 
(%) 

Mean 
Obs 

Mean 
Sim Corr 

NMB 
(%) 

NME 
(%) 

CO (ppb) SEARCH 200.9 279.1 0.3 38.9 72.4 203.7 345.9 0.3 69.8 89.3 244.6 514.1 0.5 110.2 122.5 

SO2 (ppb) SEARCH 0.8 1.9 0.1 123.3 203.1 0.8 2.6 0.1 242.2 298.3 0.5 3.6 0.3 642.6 657.9 

NO (ppb) SEARCH 4.5 2.8 0.3 -37.0 112.8 5.4 4.9 0.3 -8.6 129.0 8.6 25.9 0.4 199.8 263.8 

NO2 (ppb) SEARCH 6.4 7.9 0.5 24.3 81.8 7.5 9.4 0.5 24.9 79.0 9.0 3.0 0.5 -67.2 71.0 

HNO3 (ppb) SEARCH 0.2 0.4 0.2 111.3 149.1 0.2 0.4 0.2 114.7 155.9 0.2 0.0 0.0 -90.7 91.4 

Max 1-hr O3 
(ppb) 

AIRNow 38.3 33.8 0.5 -11.6 19.5 36.8 33.8 0.4 -8.1 17.5 36.7 30.1 0.2 -18.1 23.4 

AQS 38.0 33.1 0.5 -12.8 21.7 33.9 31.7 0.5 -6.5 20.5 N/A N/A N/A N/A N/A 

CASTNET 38.4 33.9 0.6 -11.7 17.8 38.6 33.7 0.5 -12.8 16.8 38.0 32.5 0.5 -14.3 19.2 

SEARCH 37.6 32.5 0.6 -13.3 20.1 36.0 31.2 0.6 -13.2 20.3 30.5 27.8 0.3 -9.0 22.8 

Max 8-hr O3 
(ppb) 

AIRNow 35.6 30.8 0.2 -13.5 22.6 33.8 30.8 0.2 -9.1 19.6 35.0 28.8 0.0 -17.7 24.6 

AQS 33.8 29.4 0.5 -13.0 24.3 29.8 27.8 0.4 -6.5 23.9 N/A N/A N/A N/A N/A 

CASTNET 32.5 29.7 0.5 -8.7 18.2 32.6 29.2 0.6 -10.2 16.7 29.6 28.6 0.6 -3.2 16.5 

SEARCH 33.6 29.6 0.6 -12.0 21.3 32.2 28.1 0.6 -13.0 21.6 26.4 25.9 0.2 -1.7 25.4 

24-hr Avg 
PM2.5 

(µg m-3) 

AIRNow 9.3 10.0 0.4 8.3 42.6 8.9 9.5 0.3 6.7 47.2 9.2 9.2 0.3 0.8 44.0 

IMPROVE 5.6 8.9 0.4 57.4 72.2 5.2 8.4 0.4 59.3 83.2 N/A N/A N/A N/A N/A 

STN 9.7 10.2 0.5 4.9 37.7 10.2 11.1 0.7 8.3 45.9 N/A N/A N/A N/A N/A 

SEARCH 7.8 12.4 0.2 59.7 85.3 7.6 12.9 0.3 68.4 89.0 N/A N/A N/A N/A N/A 

NH4
+ 

(µg m-3) 

CASTNET 0.9 0.5 0.6 -42.7 48.2 0.8 0.5 0.6 -32.0 45.2 1.0 0.4 0.6 -55.7 58.8 

IMPROVE -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

STN 0.8 0.6 0.4 -17.9 63.5 0.7 0.7 0.7 -9.6 63.6 N/A N/A N/A N/A N/A 

SEARCH 0.8 0.6 0.2 -24.9 62.8 0.7 0.6 0.2 -19.1 61.4 N/A N/A N/A N/A N/A 

SO4
2- 

(µg m-3) 

CASTNET 1.8 1.5 0.2 -21.1 34.1 1.7 1.5 -0.2 -14.6 39.2 1.9 1.3 0.3 -31.0 40.9 

IMPROVE 1.5 1.5 0.2 -3.3 51.3 1.5 1.4 0.1 -7.5 55.6 N/A N/A N/A N/A N/A 

STN 1.7 1.6 0.1 -5.8 53.7 1.7 1.6 0.5 -4.0 47.9 N/A N/A N/A N/A N/A 

SEARCH 1.5 1.8 0.1 24.7 68.8 1.5 1.7 0.1 16.3 62.4 N/A N/A N/A N/A N/A 

NO3
- 

(µg m-3) 

CASTNET 1.5 0.6 0.5 -59.8 66.8 1.1 0.6 0.6 -40.8 58.9 1.5 0.2 0.6 -90.2 90.2 

IMPROVE 0.9 0.6 0.2 -33.4 86.4 0.8 0.6 0.3 -23.7 91.9 N/A N/A N/A N/A N/A 

STN 1.5 0.7 0.4 -54.3 73.9 1.6 1.1 0.5 -32.4 71.8 N/A N/A N/A N/A N/A 

SEARCH 0.6 0.5 0.0 -12.8 119.2 0.6 0.7 0.3 16.4 121.1 N/A N/A N/A N/A N/A 

EC 
(µg m-3) 

IMPROVE 0.3 0.4 0.5 37.3 74.9 0.3 0.3 0.4 24.4 74.0 N/A N/A N/A N/A N/A 

SEARCH 1.0 0.6 0.1 -37.5 78.1 1.0 0.7 0.1 -29.5 87.3 N/A N/A N/A N/A N/A 

OC 
(µg m-3) 

IMPROVE 1.1 2.0 0.4 80.8 102.6 1.0 1.9 0.3 88.7 118.3 N/A N/A N/A N/A N/A 

SEARCH 2.1 2.8 0.2 33.0 85.7 2.2 2.8 0.2 24.0 79.5 N/A N/A N/A N/A N/A 

TC 
(µg m-3) 

IMPROVE 1.3 2.3 0.4 72.5 95.0 1.3 2.3 0.3 75.0 106.4 N/A N/A N/A N/A N/A 

STN 2.6 2.6 0.4 1.5 44.5 2.5 2.6 0.6 5.4 55.9 N/A N/A N/A N/A N/A 

SEARCH 2.2 3.2 0.3 41.2 87.2 2.8 3.4 0.2 20.5 73.6 N/A N/A N/A N/A N/A 

Column CO 
(1018 molec. 

cm-2) 
MOPITT 2.3 1.2 0.3 -50.7 50.7 2.3 1.2 0.1 -48.4 48.4 2.3 1.2 0.1 -48.2 48.2 

Column NO2 

(1015 molec. 
cm-2) 

OMI 2.7 2.7 0.9 1.0 20.1 2.3 2.9 0.9 26.2 32.8 2.5 2.3 0.7 -7.9 32.7 

Column SO2 

(DU) OMI 0.39 0.09 0.5 -77.2 77.5 0.41 0.09 0.5 -77.1 77.3 0.40 0.11 0.5 -73.2 73.7 

Column 
HCHO  (1015 
molec. cm-2) 

OMI 5.4 2.6 0.0 -51.5 51.6 6.3 2.6 0.1 -59.0 59.0 N/A N/A N/A N/A N/A 

Column O3 

(DU) OMI 25.7 35.8 -0.2 39.3 42.4 27.1 35.2 -0.2 29.9 36.6 25.1 36.4 -0.4 45.1 47.9 

AOD MODIS 0.1 0.1 0.8 59.4 62.2 0.1 0.1 0.7 95.7 95.8 0.1 0.1 0.7 75.0 76.5 
1 Data pairs only include simulated and observed data during May, June, and July in 2014 because of loss of simulated data in August and September, 2014.  
2 Mean Obs: Mean observed data; Mean Sim: Mean simulated data; Corr: Correlation coefficient; NMB: Normalized mean bias; NME: Normalized mean error;  
  N/A: Data not available.
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Table 3. Discrete evaluation of RT-AQF results for O3 and PM2.5 predictions  

3 
NE US 8/5-29,2002 1.4 14.6 2.2 18.0 MAQSIP-RT KA05 
NE US 8/5-29,2002 9.5 21.3 15.0 25.8 MM5/Chem KA05 
NE US 8/5-29,2002 3.2 19.1 5.1 23.4 Hysplit/CheM KA05 
E US 7/1-8/15,2004 4.3–8.5 14.8–16.9 7.0–16.4 25.3 Eta/CMAQ YU07 
SE US 5/1-9/30,2009 4.5 16.8 9.5 26.7 WRF/Chem-MADRID MT11  
SE US 5/1-9/30,2009-2011 -3.0 – 4.6 13.4 – 17.0 -5.5 – 9.6 19.9–26.7 WRF/Chem-MADRID YA14b 
SE US 5/1-9/30,2009-2011 -3.0 – 7.3 11.6-17.0 -5.5 – 15.5 17.6–27.4 WRF/Chem-MADRID YA14c 
SE US 12/1-02/28,2009-2012 -4.6 – -2.2 8.0 – 9.7 -11.9 – -6.0 16.1–19.0 WRF/Chem-MADRID YA14b 
SE US 12/1-02/28,2009-2012 -5.6 – 3.7 7.6-10.6 -13.8 – 10.8 15.0–20.3 WRF/Chem-MADRID YA14c 
SE US 5/1-9/30,2012-2014 -0.1 – 6.9 14.0 – 15.1 0 – 15.0 22.0–26.0 WRF/Chem-MADRID This workb   
SE US 5/1-9/30,2012-2014 -1.5 – 8.0 12.1–15.9 -3.0 – 17.0 19.0–27.0 WRF/Chem-MADRID This workc 
SE US 12/1-02/28,2012-2015 -6.6 – -3.0 9.7–11.1 -18.1 – -8.1 17.5–23.4 WRF/Chem-MADRID This workb 
SE US 12/1-02/28,2012-2015 -6.2 – -4.2 8.0–11.1 -18.1 – -6.5 16.8–23.4 WRF/Chem-MADRID This workc 

Maximum 8-hr average O3 
NE US 8/5-29,2002 8.3 18.2 15.1 25.4 MAQSIP-RT  KA05 
NE US 8/5-29,2002 2.8 13.0 5.0 18.6 MM5/Chem KA05 
NE US 8/5-29,2002 -1.2 15.8 -2.1 22.5 Hysplit/Chem KA05 
NE US 6/1-9/30,2004 10.2 15.7 22.8 28.1 Eta/CMAQ ED06 
E US 7/1-8/15,2004 6.5–10.4 13.9–16.6 11.9–22.6 19.7–28.8 Eta/CMAQ YU07 
NY 7/1-9/30,2004 6.5 12.8 ― ― Eta/CMAQ HO07 
NY 1/1-3/31,2005 1.4 8.7 ― ― Eta/CMAQ HO07 
NY 6/1-9/30,2005 4.7 13.0 ― ― Eta/CMAQ HO07 
NE US  7/14-8/17,2004 3.4–14.3 11.6–20.9 ― ― WRF/chem MK07 
and   17.0 23.2 ― ― CHRONOS MK07 
SE CA  5.9 16.2 ― ― AURAMS MK07 
  26.4 31.0 ― ― STEM-2K3 MK07 
  13.4 17.9 ― ― ET/CMAQ MK07 
E US 6/1-9/30,2005 10.9 16.3 22.4 27.1 WRF-NMM/CMAQ ED09 
E US 6/1-9/30,2006 10.5 15.6 25.2 30.4 WRF-NMM/CMAQ ED09 
E US 6/1-9/30,2007 7.9 14.5 16.5 24.1 WRF-NMM/CMAQ ED09 
SE US 5/1-9/30, 2009 3.5 13.6 8.3 25.0 WRF/Chem-MADRID MT11  
SE US 5/1-9/30,2009-2011 -1.8 –3.6 11.7 – 13.7 -3.7 –8.5 19.6–25.0 WRF/Chem-MADRID YA14b 
SE US 5/1-9/30,2009-2011 -2.2 –6.1 10.5–13.9 -4.5 –14.6 17.8–26.1 WRF/Chem-MADRID YA14c 
SE US 12/1-02/28,2009-2012 -4.9 – 2.0 8.1 – 12.2 -13.5 – -5.8 16.9–33.8 WRF/Chem-MADRID YA14b 
SE US 12/1-02/28,2009-2012 -4.9 – 2.0 6.7–12.2 -13.5 – -0.3 16.9–21.5 WRF/Chem-MADRID YA14c 
SE US 5/1-9/30,2012-2014 -0.2 –6.9 13.2–14.2 0.0 –17.0 22.0–27.0 WRF/Chem-MADRID This workb 
SE US 5/1-9/30,2012-2014 -0.8 –8.8 10.3–15.1 -2.0 –22.0 21.0–29.0 WRF/Chem-MADRID This workc 
SE US 12/1-02/28,2012-2015 -6.2 – -3.1 11.0–17.3 -17.7 – -9.1 19.6–24.6 WRF/Chem-MADRID This workb 
SE US 12/1-02/28,2012-2015 -6.2 – -0.5 6.1–17.3 -17.7 – -1.7 18.2–25.4 WRF/Chem-MADRID This workc 

24-hr average PM2.5 
NY 7/1-9/30,2004 5.4 13.2 ― ― Eta/CMAQ HO07 
NY 1/1-3/31,2005 6.2 14.5 ― ― Eta/CMAQ HO07 
NY 6/1-7/31,2005 4.4 13.6 ― ― Eta/CMAQ HO07 
PN 8/1-11/30,2004 2.1–2.2  ― 17–32 70–81 MM5/CMAQ CH08 
E US 
E Texas 
NA 
NA 
NA 
NA 
NA 
NA 
SE US 

7/14-8/18,2004 
8/31-10/12,2006 
Summer 2008 
Winter 2008 
Summer 2009 
Summer 2008 
Winter 2008 
Summer 2009 
5/1-9/30,2009 

-3.2 
-1.3 
-2.08 
0.86 
-0.70 
0.69 
-0.18 
2.08 
-0.6 

8.8 
5.5 
12.8 
14.1 
12.9 
13.5 
15.9 
13.6 
5.9 

-21.0 
― 
― 
― 
― 
― 
― 
― 
-5.6 

41.2 
― 
― 
― 
― 
― 
― 
― 
37.0 

Eta/CMAQ 
7-model ensemble a 
GEM-CHRONOS 
GEM-CHRONOS 
GEM-CHRONOS 
GEM-MACH15 
GEM-MACH15 
GEM-MACH15 
WRF/Chem-MADRID 

YU08 
DJ10 
MA09 
MA09 
MA09 
MA09 
MA09 
MA09 
MT11  

SE US 5/1-9/30,2009-2011 -1.3 – -0.6 5.9 – 8.7 -10.1 – -5.2 36.7 – 38.9 WRF/Chem-MADRID YA14b 
SE US 5/1-9/30,2009-2011 -1.3 – 3.6 4.8 – 20.1 -10.1 – 34.3 35.2 – 65.5 WRF/Chem-MADRID YA14c 
SE US 12/1-02/28,2009-2012 -1.1 – 0.2 5.4 – 6.8 -10.2 – 1.4 39.9 – 41.6 WRF/Chem-MADRID YA14b 
SE US 12/1-02/28,2009-2012 -2.9 – 3.1 4.9 – 9.3 -20.6 – 36.6 0.6 – 65.5 WRF/Chem-MADRID YA14c 
SE US 5/1-9/30,2012-2014 -0.5 – 1.4 5.1–5.7 -4.0 – 15.0 36.0 – 40.0 WRF/Chem-MADRID This workb 
SE US 5/1-9/30,2012-2014 -0.5 – 4.8 3.8–10.8 2.0 – 53.0 33.0 – 74.0 WRF/Chem-MADRID This workc 
SE US 12/1-02/28,2012-2015 0.2 – 0.8 5.5–6.1 0.8 – 8.3 42.6 – 47.4 WRF/Chem-MADRID This workb 
SE US 12/1-02/28,2012-2015 0.1 – 5.2 4.9–10.5 4.9 – 68.4 37.3 – 89.0 WRF/Chem-MADRID This workc 

 

1. MB: Mean Bias; RMSE: Root Mean Square Error; NMB: Normalized Mean Bias; NME: Normalized Mean Error. SE US: 
Southeastern U.S.; E US: Eastern U.S., NE US: Northeastern U.S.; SE CA: southeastern Canada; PN: Pacific Northwest; NY: 
New York State; E Texas: eastern Texas; NA: North America. The unit for MB and RSME are ppb for O3 and µg m-3 for PM2.5. 

2. Superscript a: the 7 models include: WRF/Chem-2 (27-km), WRF/Chem-2 (12-km), CHRONOS, AURAMS, STEM-2K3, 
BAMS (15-km), and NMM/CMAQ; b: statistics based on evaluation against AirNow; c: statistics based on evaluation against 
all datasets. 

3. MT11: Chuang et al. (2011); KA05: Kang et al. (2005); ED06: Eder et al. (2006); HO07: Hogrefe et al. (2007); MK07; McKeen 
  et al. (2007); YU07: Yu et al. (2007); CH08: Chen et al. (2008); MA09: Makar et al., 2009; ED09: Eder et al. (2009); YU08: Yu 

et al. (2008); DJ10: Djalalova et al. (2010); YA14: Yahya et al. (2014).  
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Table 4. Categorical evaluation of RT-AQF results against AirNow for O3 and PM2.5 predictions. 
Area Period A 

(%) 
CSI 
(%) 

POD 
(%) 

B FAR 
(%) 

Model Reference 

Maximum 1-hr average O3 
NE US 8/5-29,2002 99.2 9.7 14.0 0.6 76 MAQSIP-RT KA05 
NE US 8/5-29,2002 97.0 9.8 29.8 2.3 87.2 MM5/Chem KA05 
NE US 8/5-29,2002 99.0 8.3 18.2 1.4 86.7 Hysplit/CheM KA05 
SE US 5/1-9/30,2009 94.0 5.2 31.3 5.3 94.1 WRF/Chem-MADRID MT11  
SE US 5/1-9/30,2009-2011 94.6-96 5.2-13.8 17-31.3 0.6-5.3 67-94.1 WRF/Chem-MADRID YA14 
SE US 12/1-02/28,2009-2012 100 0 0 0 0 WRF/Chem-MADRID YA14 
SE US 5/1-9/30,2012-2014 94.2-97.7 3.6-15.5 18.8-30.5 0.9-7.9 71.5-96.1 WRF/Chem-MADRID This work 
SE US 12/1-02/28,2012-2015 100 0 0 0 0 WRF/Chem-MADRID This work 

Maximum 8-hr average O3 
NE US 8/1-10,2001 80.0 34.0 49.0 1.1 13.0 MM5/MAQSIP_RT MC04 
NE US. 8/5-29,2002 85.8 18.1 26.7 0.7 64.0 MAQSIP-RT  KA05 
NE US 8/5-29,2002 76.2 17.6 36.4 1.4 74.6 MM5/Chem KA05 
NE US 8/5-29,2002 89.5 5.8 7.1 0.3 76.3 Hysplit/Chem KA05 
NE US 6/1-9/30,2004 98.9 14.2 41.0 2.3 82.1 Eta/CMAQ ED06 
NY 7/1-9/30,2004 84.0-95.2 31.4-53.2 46.5-84.8 ― 32.9-55.2 Eta/CMAQ HO07 
 1/1-3/31, 6/1-9/30,2005 96.1-99.8 0.0-29.0 0.0-58.3 ― 36.7-82.5 Eta/CMAQ HO07 
NE US 8/12,2005 91.6 23.4 31.3 0.7 51.6 Eta/CMAQ LE08 
E US 8/12,2005 90.4 24.3 37.5 0.9 59.1 Eta/CMAQ LE08 
CONUS 8/12,2005 87.4 26.0 54.2 1.6 66.7 Eta/CMAQ LE08 
SE US 5/1-9/30, 2009 85.6 14.0 33.3 1.7 80.6 WRF/Chem-MADRID MT11  
CONUS 6/1-8/31,2010 86-91 0.17-0.21 0.71-0.76  0.77-0.82 WRF-NMM/CMAQ CH13 
CONUS 01/01-12/31,2010 93-96 0.17-0.21 0.64-0.67  0.76-0.81 WRF-NMM/CMAQ CH13 
SE US 5/1-9/30,2009-2011 81.4-85.7 14-24.9 29.1-33.3 0.6-1.7 48.6-80.6 WRF/Chem-MADRID YA14 
SE US 12/1-02/28,2009-2012 98.7-100 0 0 0 N/Aa WRF/Chem-MADRID YA14 
SE US 5/1-9/30,2012-2014 80.2-85.3 9.9-25.3 26.6-46.7 0.8-4.2 54.9-88.9 WRF/Chem-MADRID This work 
SE US 12/1-02/28,2012-2015 98.7-99.2 0 0 0 N/Aa WRF/Chem-MADRID This work 

24-hr average PM2.5 
NY 7/1-9/30,2004 60.8-89.7 22.5-53.7 24.3-90.9 ― 25.0-55.0 Eta/CMAQ HO07 
 1/1-3/31, 6/1-7/31,2005 91.4-99.7 0-3.6 0-44.7 ― N/Aa, 

96.2-100 
Eta/CMAQ 
 

HO07 
 

E Texas 8/31-10/12,2006 ― 0.0-8.0 0.0-14 ― 80-100 7-model ensemble b DJ10 
SE US 5/1-9/30,2009 76.2 22.3 31.5 0.7 56.6 WRF/Chem-MADRID MT11  
SE US 5/1-9/30,2009-2011 70.7-76.2 22.3-27.9 31.5-36 0.6-0.7 44.6-56.7 WRF/Chem-MADRID YA14 
SE US 12/1-02/28,2009-2012 82.2-85.9 14.8-22.2 27.7-38.3 0.7-1.2 61.3-76.6 WRF/Chem-MADRID YA14 
SE US 5/1-9/30,2012-2014 77.5-83.2 10.3-21.3 15.3-40.1 0.6-1.3 68.3-75.9 WRF/Chem-MADRID This work 
SE US 12/1-02/28,2012-2015 83.5-85.3 14.7-17.1 25.5-31.8 1.0-1.2 72.1-74.1 WRF/Chem-MADRID This work 

1. A: Accuracy; CSI: Critical Success index; POD: Probability Of Detection; B: Bias; FAR: False Alarm Ratio. SE US: 
Southeastern U.S.; NE US: Northeastern U.S.; E US: eastern U.S.; E Texas: eastern Texas; NY: New York State, 
CONUS: continental U.S.  

2. Superscript a: An FAR of N/A indicates that no exceedances were predicted by the AQF model; b: the seven models 
include: WRF/chem-2 (27-km), WRF/chem-2 (12-km), CHRONOS, AURAMS, STEM-2K3, BAMS (15-km), and 
NMM/CMAQ;  

3. MT11: Chuang et al. (2011); MC04: McHenry et al. (2004); KA05: Kang et al. (2005); ED06: Eder et al. (2006); HO07:  
Hogrefe et al. (2007); LE08: Lee et al. (2008); DJ10: Djalalova et al. (2010); CH13: Chai et al. (2013); YA14: Yahya et 
al. (2014).  

 

 



50 
 

List of Figure Captions 

Figure 1. Discrete evaluation of the maximum 1-hr and 8-hr O3 and 24-hr average PM2.5 for (a) 

O3 seasons and (b) winters during 2009-2015. 

Figure 2. Spatial distributions of maximum 1-hr O3 and 8-hr O3 during the O3 seasons and 

average 24-hr PM2.5 concentrations during the O3 and winter seasons during 2012-2015. The 

observations are symbolled as circles, they are taken from AIRNow, AIRS-AQS, CASTNET, 

and SEARCH for O3 and from AIRNow, IMPROVE, STN, and SEARCH for PM2.5.  

Figure 3. Time series of the observed and forecasted maximum 1-hr O3 and 8-hr O3 

concentrations for O3 seasons during 2012-2015. The observations are taken from 

AIRNow.  

Figure 4. Time series of the average 24-hr average PM2.5 concentrations for (a) O3 

seasons and (b) winters during 2012-2015. The observations are taken from AIRNow. 

Figure 5. Categorical evaluation of the maximum 1-hr and 8-hr O3 and 24-hr average PM2.5 for 

(a) O3 seasons and (b) winters during 2009-2015. 

Figure 6. Spatial distributions of satellite-derived and simulated column NO2, TOR, and AOD 

during (a) the 2012 O3 season (rows 1 and 2), and (b) the winter of 2012-2013 (rows 3 and 

4).  

Figure 7. Comparison of CO spatial distributions in Aug. 2012: (a) satellite observation from 

MOPPIT, (b) baseline simulation, and (c) sensitivity simulation. 

Figure 8. Comparison of TOR spatial distributions in Dec. 2012: (a) satellite observation from 

OMI, (b) baseline simulation, and (c) sensitivity simulation. 

Figure 9. Changes in observed and forecasted T2, Precip, and WS10 (relative to 2009) and 

SWDOWN, LWDOWN, and CF (relative to 2011) during 2010-2015. 
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Figure 10. Changes in observed and forecasted surface O3 and PM2.5 concentrations (relative to 

2009) and column CO, NO2, SO2, TOR, AOD (relative to 2011) during 2010-2015. 



(a) 
 

 

(b) 

 
 

Figure 1. Discrete evaluation of the maximum 1-hr and 8-hr O3 and 24-hr average PM2.5 for (a) O3 seasons 
and (b) winters during 2009-2015.            
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Figure 2. Spatial distributions of maximum 1-hr O3 and 8-hr O3 during the O3 seasons and average 24-hr PM2.5 

concentrations during the O3 and winter seasons during 2012-2015. The observations are symbolled as circles, they are 
taken from AIRNow, AIRS-AQS, CASTNET, and SEARCH for O3 and from AIRNow, IMPROVE, STN, and SEARCH 
for PM2.5.  
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Figure 3. Time series of the observed and forecasted maximum 1-hr O3 and 8-hr O3 concentrations for O3 seasons during 2012-2015. The 
observations are taken from AIRNow.  
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Figure 4. Time series of the average 24-hr average PM2.5 concentrations for (a) O3 seasons and (b) winters during 2012-2015. The 
observations are taken from AIRNow.
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Figure 5. Categorical evaluation of the maximum 1-hr and 8-hr O3 and 24-hr average PM2.5 for (a) O3 seasons 
and (b) winters during 2009-2015.
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Figure 6. Spatial distributions of satellite-derived and simulated column NO2, TOR, and AOD during 
(a) the 2012 O3 season (rows 1 and 2), and (b) the winter of 2012-2013 (rows 3 and 4). 



(a) Obs from MOPPIT (b) Sim_base (c) Sim_sen 

 
 

 

Figure 7. Comparison of CO spatial distributions in August. 2012: (a) satellite observation from 
OMI, (b) baseline simulation, and (c) sensitivity simulation. 

(a) Obs from OMI (b) Sim_base (c) Sim_sen 

 
 

 

Figure 8. Comparison of TOR spatial distributions in Dec. 2012: (a) satellite observation from 
OMI, (b) baseline simulation, and (c) sensitivity simulation. 

 

 



 

Figure 9. Changes in observed and forecasted T2, Precip, and WS10 (relative to 2009) and SWDOWN, 
LWDOWN, and CF (relative to 2011) during 2010-2015. 

 

 



 

Figure 10. Changes in observed and forecasted surface O3 and PM2.5 concentrations (relative to 
2009) and column CO, NO2, SO2, TOR, AOD (relative to 2011) during 2010-2015.  



Highlights: 

(1) A comprehensive evaluation of multi-year forecasts using surface and satellite data 

(2) The model shows good skills for multi-year trends and inter-seasonal variability at surface 

(3) Satellite-constrained boundary conditions can improve forecasts of column variables.  




