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Abstract

An online-coupled meteorology-chemistry model, WRF/Chem-MADRID, has been
deployed for real time air quality forecast (RT-AQF) in southeastern U.S. since 2009. A
comprehensive evaluation of multi-year RT-AQF shows overall good performance for
temperature and relative humidity at 2-m (T2, RH2), downward surface shortwave radiation
(SWDOWN) and longwave radiation (LWDOWN), and cloud fraction (CF), ozogedi@l fine
particles (PM;) at surface, tropospheric ozone residuals (TOR)isgasons (May-September),
and column N@in winters (December-February). Moderate-to-large biases exist in wind sped
at 10-m (WS10), precipitation (Precip), cloud optical depth (COT), ammoniumg \NddlIfate
(SO), and nitrate (N@) at the IMPROVE and SEARCH networks, organic carbon (OC) at
IMPROVE, and elemental carbon (EC) and OC at SEARCH, aerosol optical depth (AOD) and
column carbon monoxide (CO), sulfur dioxide g@nd formaldehyde (HCHO) in boths @nd
winter seasons, column nitrogen dioxide @\ O; seasons, and TOR in winter. These biases
indicate uncertainties in the boundary layer and cloud process treatments (e.g., surface
roughness, microphysics cumulus parameterization), emissions (gagd ®M precursors,
biogenic, mobile, and wildfire emissions), upper boundary conditions for all major gases and
PM; s species, and chemistry and aerosol treatments (e.g., winter photochemistry, aerosol

thermodynamics). The model shows overall good skills in reproducing the observed multi-year
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trends and inter-seasonal variability in meteormalgand radiative variables such as T2, WS10,
Precip, SWDOWN, and LWDOWN, and relatively well thieserved trends in surfacg &nd
PM, 5 but relatively poor for column abundances of GlQ,, SG,, HCHO, TOR, and AOD.

The sensitivity simulation using satellite-congtiead boundary conditions fors@nd CO shows
substantial improvement for both spatial distribntand domain-mean performance statistics.
The model’s forecasting skills for air quality daa further enhanced through improving model
inputs (e.g., anthropogenic emissions for urbaasaead upper boundary conditions of chemical
species), meteorological forecasts (e.g., WS1GiPrand meteorologically-dependent
emissions (e.g., biogenic and wildfire emissioasld model physics and chemical treatments
(e.g., gas-phase chemistry in winter conditionsu@lprocesses and its interactions with

radiation and aerosol).
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Campus Box 8208, NCSU, Raleigh, NC 27695; e-maitigy zhang@ncsu.edu

Keywords
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data, multi-year trend analysis

1. Introduction

Real-time air-quality forecasting (RT-AQF) of thencentrations of pollutants of special health
concerns such as ozonesj@nd fine particulate matter (BN provides a basis for early air
guality alerts and preventative actions that redacpollution and protect human health.
Increasing public awareness of adverse health itagd@mbient air pollution in both developed
and developing countries and the availability ahptex, deterministic three-dimensional (3-D)
numerical models for RT-AQF have provided drivingdes for the establishment and
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advancement of RT-AQF. Despite substantial impramisiof ambient air quality in major
cities in many countries, the frequent occurrerfesevere regional hazes in recent years in a
number of countries such as China (e.g., Wang e2@l4), India, and Singapore necessitate the
continuous development and application of techresdoeRT-AQF worldwide. A number of 3-
D air quality models have been deployed for RT-A€Qtee the mid-1990s on global (e.g.,
Takigawa et al., 2007; Mangold et al., 2011) agianal scales (e.g., Carmichael et al., 2003;
McHenry et al., 2004; McKeen et al., 2005; 2010;etal., 2007, 2008; Eder et al., 2010).
Kukkonen et al. (2011) reviewed 18 regional scaleAQF models that are currently used in
Europe, among which, 3 out 18 are online-coupledeats Zhang et al. (2012a, b) provided a
comprehensive review of history, techniques, cursétus, and future research needs along with
9 global and 36 regional RT-AQF models that areanity used in Australia, North America,
South America, Europe, and Asia, among which, 49agibbal models and 5 out of 36 regional
models are online-coupled models. Among those nsptlet 3-D RT-AQF models with coupled
meteorology and chemistry such as the online-calleather Research and Forecasting model
with Chemistry (WRF/Chem) (Grell et al., 2005) agvanced tools for RT-AQF that can
realistically represent the feedback mechanismsd®st meteorology and chemistry in the
atmosphere. Theyowever, may not always outperform offline RT-AQBdels, as there remain
larger uncertainties in RT-AQF models than thosgimating from the feedback mechanisms, and
not all RT-AQF models represent all feedback meidmas that occur in the real atmosphere. The
strengths and limitations of online-coupled modelge been reviewed in several papers (e.g., Zhang
2008;Baklanov et al., 2014).

Since May 2009, WRF/Chem with the Model of Aerd®ghamics, Reaction, lonization,
and Dissolution (MADRID) (WRF/Chem-MADRID) (Zhang &l., 2010a, 2012c) has been
deployed by the lead author’s group for RT-AQFontheastern U.S. for ozoned3eason
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(May-September) and winter season (December-Fefyr(@nhuang et al., 2011; Yahya et al.,
2014a). The multi-year RT-AQF enables the assessofi¢he model's capability and robustness
in forecasting major pollutants as well as thefeirannual and inter-season variability, and
multi-year trends with the long-term forecastingedaln this work, multi-year forecasts of air
quality and meteorology during 2009-2015 using WRfm-MADRID are evaluated against
surface and satellite-derived observations. Theatilies are to evaluate the model’s skill in
forecasting the observed air quality and meteosobogl their variation trends during 2009-2015
and to identify areas of model improvements foremaccurate meteorological and chemical

forecasts.

2. Model Description and Evaluation Protocol
2.1 Model Description

WRF/Chem-MADRID is an online-coupled meteorology amemistry model. It was
developed based on WRF/Chem version 3.0 (Grell,&2@05) and CMAQ-MADRID (Zhang et
al., 2004) with updates in gas-phase chemistryaandsol treatments by Zhang et al. (2010a, b,
2012c). WRF/Chem-MADRID treats all major aerosagesses such as the thermodynamic
equilibrium for both inorganic and organic specigsy particle formation,
condensation/evaporation, coagulation, gas/pantiess transfer, dry and wet deposition. Unlike
offline-coupled air quality models, WRF/Chem-MADR#HImulates aerosol direct and semi-
direct feedbacks to photolysis, radiation, and @lary boundary layer (PBL) meteorology, as
well as aerosol indirect effects on cloud and gigiion formation via many aerosol-cloud
interaction processes. The physics and chemistigragpused in this study follow those of
Chuang et al. (2011) and Yahya et al. (2014a); #reykept the same for all forecasting periods

since 2009. The physics options include the cloicophysics of Lin et al. (1983); the Rapid
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Radiative Transfer Model (RRTM) of Mlawer et al9@r7) for longwave radiation; the Goddard
scheme of Chou et al. (1998) for shortwave radigtioe Yonsei University (YSU) PBL scheme
of (Hong et al. 2006); the National Center for @mmental Prediction, Oregon State
University, Air Force, Hydrologic Research Lab (NBALSM (Chen and Dudhia, 2001); and
the Grell-Devenyi ensemble cumulus parameterizgt@nell and Devenyi, 2002). The chemistry
and aerosol-related options chosen include the Z20bon Bond gas-phase chemical
mechanism (CBO05) (Yarwood et al., 2005); the Camétellon (CMU) bulk aqueous-phase
chemical kinetic mechanism (Fahey and Pandis, 2004 MADRID1 aerosol module with 8
size sections over the PM aerodynamic diametereran@.025-11.63@am of Zhang et al. (2004,
20104, b, 2012c), and the aerosol activation ofhR&zzak and Ghan (2002). A more detailed
description of the model can be found in Chuarg.€®011) and Yahya et al. (2014a).

2.2 RT-AQF Deployment and Inputs

The forecasting simulations are performed durirg@and winter seasons at a horizontal grid
resolution of 12 km over an area in southeaste$ ldcluding the states of Mississippi (Ml),
Alabama (AL), Georgia (GA), Florida (FL), South Gklna (SC), North Carolina (NC),
Tennessee (TN), Kentucky (KY), Virginia (VA), Weédirginia (WV), and Delaware (DE), as
well as small portions of Louisiana (LA), ArkangadR), Missouri (MS), lllinois (IL), Indiana
(IN), Ohio (OH), and Maryland (MD). The hourly addily forecast products are provided at
http://www.meas.ncsu.edu/aqgforecasting/Real_Timd.hT his study analyzes forecast products
during six Q and winter seasons between May 1, 2009 and Fgh28a2015. The National
Center for Environmental Prediction’s (NCEP) metéagical forecast is downloaded at 7 p.m.
(Local Standard Time) to initialize a 60-hr forettiag cycle using WRF/Chem-MADRID with
12-hr spin-up and 48-hr forecasting. The anthropmgemissions are based on the projected

2009 emissions by the Visibility Improvement Statel Tribal Association of the Southeast’s
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123 (VISTAS) from the 1999 National Emission Inventsri@®El) version 2 based on historical
124  growth factors and assumed control strategies @drand Sabo, 2008). Those emissions vary
125 hourly and account for seasonal variations. Fogdmic emissions, offline biogenic emissions
126 available from the VISTAS emissions were originalged for the RT-AQF during May 1, 2009
127 and February 28, 2011. The online biogenic emmssitom the Model for Gases and Aerosols
128 from Nature (MEGAN) version 2 have been used sibeeember 2011. Mineral dust emissions
129 are simulated using online dust emission of Sh&3Q&2

130 The VISTAS 2009 36-km CMAQ simulation results ahdge from the previous day’s
131 simulation are used to provide daily chemical bargcnd initial conditions (BCONs and

132 ICONSs), respectively. One-week spin up simulatsperformed for the first day of the first 60-
133 hr forecasting cycle for each forecasting season.

134 2.3 Evaluation Datasets and Protocols

135 Zhang et al. (2012a) recommended both discreteatedjorical evaluation for RT-AQF
136 models, which are carried out for meteorological ehemical forecasts in this work. The PBL
137 meteorological variables evaluated include tempeesat 2-m (T2), relative humidity at 2-m
138 (RH2), wind speed and direction at 10-m (WS10 ariall\d), and daily precipitation (Precip).
139 The chemical species evaluated include maximumdntr8-hr @, carbon monoxide (CO),

140 sulfur dioxide (SQ), nitric oxide (NO), nitrogen dioxide (N nitric acid (HNQ), 24-hr

141 average PMsand PM s species such as ammonium (NH sulfate (SG), nitrate (NQ),

142 elemental carbon (EC), organic carbon (OC) and tatidoon (TC = EC+0OC). Given the low
143 accuracy of anemometers at low wind speed conditithe observed and simulated data pairs
144  with the observed value below 0.771 thase excluded in the statistical calculation foliogy

145 Olerud et al. (2005). A number of surface netwaitesused for model evaluation, as

146 summarized in Table S1 in the supplementary métefiaese include the National Climatic
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Data Center (NCDC), the AIRNow database, the Aialidy System (AQS), the Clean Air
Status and Trends Network (CASTNET), the Interageonitoring of Protected Visual
Environments (IMPROVE), the Speciated Trends NekwW8TN), and the Southern Aerosol
Research and Characterization (SEARCH). While AARNAQS, and STN include primarily
urban and suburban sites, and NCDC, CASTNET andRO®NE include mainly rural and
remote sites. NCDC and SEARCH includes both urlmahraral sites in southeastern U.S.
While 14 statistics defined in Zhang et al. (200@12a) and Yu et al. (2006) are
calculated against all surface network datasetisardiscrete evaluation, the analysis in this
study focuses on several commonly-used metricsidieg the mean bias (MB), normalized
mean bias (NMB), the normalized mean error (NME9amabsolute gross error (MAGE), Root
mean square error (RMSE), and correlation coefiifR). The discrete performance statistical
criteria for chemical forecasts are based on Zlerad. (2006) which recommended the use of
NMBs < 15% and NMEs 30% to indicate a satisfactory performance fea@d PMs. For
meteorological variables, Tesche and Tremback (280ggested a good performance with MB
< 0.5 m § for WS10, MB< 10 degrees and MAGE 30 degrees for WD10, and MB80.5 K
and MAGE< 2 K for T2. However, such criteria were develop@dmeteorological simulations
with data assimilation. Data assimilation is natdif this work because it masks the feedbacks
between chemistry and meteorology. The model padoce may not be as well as those with
data assimilation. Brunner et al. (2014) evaluateteorological simulations for the year of
2010 from eight simulations of WRF version 3.4 wdifferent combinations of physics options
and found that the monthly MBs of T2 are within 2Kd MBs of WS10 are within 1.7 rit.s
The reported NMBs of Precip simulated by WRF rafngs -88% to 66% (e.g., Zhang et al.,
2010c; Yahya et al., 2014a, b, 2015a; Penrod €2@14). NMBs within +30% are considered to

be acceptable performance for Precip. Categastesiktics are calculated for the maximum 1-hr
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and 8-hr @ and 24-hr average Pidagainst near-real time observations from AIRNoweims

of accuracy (A), critical success index (CSIl), @bitity of detection (POD), bias (B), and false
alarm ratio (FAR), as defined in Kang et al. (20863 Zhang et al. (2012a). The threshold
values are 80 ppb for the maximum 1-hg 60 ppb for maximum 8-hr 9and 15ug m* for 24-

hr average PMs following Chuang et al. (2011). For categoricahlenation, satisfactory
performance would yield values close to 1 for A],Gd POD and a value close to O for FAR.
For B, a value of 1 would indicate no bias, andimber greater than 1 means that the model
forecasts more exceedances than observed, andersz In addition to domain-mean discrete
and categorical statistics, the forecasted metegicdl variables and chemical concentrations
are evaluated using available observations in tefnd®main-mean spatial distributions and site-
specific hourly variations. The representativeamrland rural sites selected include Atlanta,
Georgia; Charlotte and Raleigh in North Carolinayisville, Kentucky; Birmingham, Alabama;
and Jacksonville, Florida.

In addition to surface evaluation, satellite datawsed to assess the model’s capability in
forecasting column values of meteorological, radeatand chemical variables, as summarized in
Table S1. Such evaluations have not been preyigesformed for RT-AQF models. These
include Precip from the Global Precipitation Climlagy Project (GPCP), downward surface
shortwave radiation (SWDOWN) and longwave radiatiottDOWN) from the Cloud's and the
Earth's Radiant Energy System (CERES), cloud fsadiCF), aerosol optical depth (AOD), and
cloud optical depth (COT) from the Moderate Resotutmaging Spectroradiometer (MODIS),
tropospheric CO column abundances from the Measmemnof Pollution in the Troposphere
(MOPITT), tropospheric column abundances ofNformaldehyde (HCHO), and sulfur dioxide
(SO,), as well as tropospheric ozone residuals (TO&pfthe Ozone Monitoring Instrument

(OMI)/ Microwave Limb Sounder (MLS). All satellitgata used are level-3 monthly average
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195 (except for column S§which is daily average because monthly averagetisvailable)

196 retrieval data that have been validated and quasisyired by data providers (Martin, 2008).
197 Following Zhang et al. (2009), the model outputsdib column variables except for TORs are
198 vertically integrated up to the tropopause andayed at the same satellite crossing time to
199 generate the tropospheric amounts in order to nthtekatellite data. Column variables are
200 evaluated in terms of domain-mean discrete stegisind spatial distributions.

201

202 3. Evaluation of Model Performance

203 3.1 Evaluation of Meteorological Variables

204 Meteorological forecasts are evaluated to undedstiagir influence on chemical

205 forecasts. The meteorological performance forgldeseasons and three winter seasons during
206 May 1, 2009-February 28, 2012 has been evaluat¥dfya et al. (2014a). This study focuses
207 on the evaluation of threes;@easons and three winter seasons during May 2-2éruary 28,
208 2015. Table 1 summarizes domain-mean performaatiststs for T2, RH2, WS10, and WD10
209 against data from CASTNET, NCDC, and SEARCH, Pragainst data from CASTNET,

210 NCDC, and GPCP, SWDOWN and LWDOWN against CERES8,@R and COT against

211 MODIS during these threes@easons and three winter seasons.

212 3.1.1 Ozone Seasons

213 MBs for T2 range from 0.5-2.1 °C, 0.6-1.8 °C, an@-B.6 °C and MAGEs range from
214 4.0-4.2°C, 3.7-4.0°C, and 3.9-4.7°C against daafCASTNET, NCDC, and SEARCH,

215 respectively. The values of R for T2 range from@.bat CASTNET and NCDC, and 0.3-0.5 at
216 SEARCH. Low R values at the SEARCH sites indicatesible compensation of large positive
217 and negative biases at different sites. WhileMiBs and MAGEs of T2 are larger than 0.5 K

218 and 2 K, respectively, suggested by Tesche andfaek(2002), they fall into the typical
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ranges of MBs (< 2 °C) reported for this and newarsions of WRF and WRF/Chem in the
literature (e.g., Brunner et al., 2014). Moderaggm biases in T2 are mainly caused by
moderate overpredictions in SWDOWN with NMBs of 1498.6%, and 27.6%, and moderate
underpredictions in CF with NMBs of -8.3%, -12.780d -14.5% at the CASTNET, NCDC, and
SEARCH sites, respectively. In this version of WRE&b-grid cloud feedbacks to radiation are
neglected in the cumulus parameterization, contingun part to the overpredictions in
SWDOWN (Alapaty et al., 2012). Limitations in therface layer and shortwave radiation
schemes also contribute to the overpredictiondMDOWN. The large underpredictions of
COT with NMBs of -65.8% to -60.3% reflect the peadnility of the model in simulating cloud
variables, due to the limitations in the parametgions of cloud dynamics, thermodynamics,
and microphysics, and interactions with aerosolsa(y et al., 2012c, d, 2015). The model
simulates LWDOWN well, with NMBs within 2%.

The warm biases in T2 directly affect RH2 forecaltsderate underpredictions occur in
RH2 with MBs of -16.4% to -9.7%, -14.6% to -6.9%da20.5% to -10.4%, at the CASTNET,
NCDC, and SEARCH sites, respectively. The valueR of RH2 are lower, ranging from 0.2-
0.4 at all sites. The model simulates WS10 atNB®&C sites well with MBs of 0.2-0.4 n's
MGAEs of 1.8 m &, and NMBs of 4.8-5.2%. However, the model modgyatr significantly
overpredicts WS10 at the SEARCH and CASTNET siti#ls MBs of 0.3-0.9 m$and 1.6-1.8
m s', MAGEs of 1.2-1.3 m$and 1.9-2.1 m'§ and NMBs of 15.1-40.9% and 65.6-100.5%,
respectively. The MBs at all sites are generaitpiw 1.7 m §" reported by Brunner et al.
(2014) for simulations with WRF version 3.4 andhet NCDC sites they are even smaller than a
performance indicator value of 0.5 fh suggested by Tesche and Tremback (2002) for
simulations with data assimilation. Similar lameerpredictions of WS10 by WRF have been

reported by a number of studies (e.g., Penrod e2@14; Yahya et al., 2014a; Brunner et al.,
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2014). The WS10 overpredictions are due in pannt@solved surface roughness and
topographical features by the surface drag parainaten used in WRF and in part to the use of
coarse horizontal and vertical resolutions in tire¢asting simulations (Cheng and Steenburgh,
2005; Mass and Ovens, 2011). Comparing to the NGI¥S that were carefully selected for
meteorological measurements, the SEARCH and CASTHIteS were selected for air quality
measurements, and many sites are difficult to belved at a spatial grid resolution of 12-km
because of complex topography and surfaces. MB#/®10 range from 16.3-29.0°, 42.4-
47.9°, and 1.7-24.4° and MAGEs range from 79.1-86.285.1-86.1 °C, and 76.2-94.1°C
against data from CASTNET, NCDC, and SEARCH, respely. The values of MBs and
MAGEs are much higher than 10 and 30 degrees, ctgply, suggested by Tesche and
Tremback (2002), indicating a poor performanceViti»10 that is partly because the data
assimilation is not used and partly because tHaceiroughness and topographic features
cannot be resolved. The values of R for WD10 rdrga 0.6-0.7 at CASTNET and NCDC,

and 0.3-0.6 at SEARCH. These results indicate icelitaitations in the YSU PBL and the
Monin-Obukhov surface layer schemes used in resglmain features of the PBL meteorology,
particularly over complex terrain with uneven sagd@opography and mountainous regions (e.g.,
the Appalachian mountains).

Precip is moderately to significantly overpredicteith NMBs of 52.0-56.2%, 34.4-
49.7%, and 29.8-54.6% against data from CASTNETDRCand GPCP, respectively, they are
mostly beyond the acceptable performance rang8@¥a: Similar large overpredictions of
Precip by WRF or WRF/Chem have been reported inymrsaudies (e.g., Caldwell et al., 2009;
Zhang et al., 2010c, 2012c, d). R values durirg@hseasons are low, ranging from ~0.0 to 0.4.
Figure S1 in the supplementary material comparespatial distributions of forecasted Precip

with GPCP Precip in the{&easons. The forecasted Precip is largely owiqiesl over most
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290

areas in the simulation domain. Such large biasdgaor correlation can be attributed to three
main reasons. First, as reported by Zhang €2@1.0c), the Grell-Devenyi ensemble cumulus
parameterization has a tendency to overpredictiéegy and the intensity of afternoon
convective rainfall. Second, the Purdue Lin mi¢rggics also has a tendency to overpredict
cloud ice, graupel, and surface rainfall (Zhanglgt2012d). Third, as reported in Alapaty et al.
(2012), neglecting sub-grid cloud feedbacks toathaln in the cumulus parameterization can
overpredict SWDOWN, resulting in unrealisticallyde surface forcing for convection thus
overpredictions in Precip. Those limitations explhe predicted excessive convection and non-
convection rain. While the warm biases in T2 ald¥®WN can lead to higher{and PM s,
the positive biases in WS10 and Precip and thetivegaiases in CF and COT can lead to lower
Oz and PM . These effects may compensate each other in cheforecasts.
3.1.2 Winter Seasons

The MBs for T2 in winter are larger than thoseha @ season in 2012 but smaller than
those in the @seasons in 2013-2014 at the CASTNET and NCDC, sitiéls a range of 0.7-1.0
°C and 0.8-1.2 °C, respectively. The MB at the 8EM sites is 1.1 °C during 2014-2015
winter, but -5°C and -3 °C, respectively, in wirgteluring 2012-2013 and 2013-2014. During
those winters, heavy snowfall occurred over a lamgas in southeastern U.S., particularly
during the record-cold winter in Jan-Feb., 2014e Told biases at the SEARCH sites indicate
that the model tends to underestimate the snownygettes in southeastern U.S. and the effects
of urban heat island during winters. RH2 are bdtteecasted in winters than ins@eason at all
sites except for SEARCH during 2012-2013 and 200B42vinters during which large cold
biases in T2 occur. Similar to the €ason, WS10 in winters is simulated well at tiDIg
sites with MBs of 0.2-0.8 ni'sbut largely overpredicted at the CASTNET and SEARStes

with MBs of 1.6-2.5 and 0.2-1.5 i $ecause of the model’s limited capability in resaj
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surface roughness and topographical features. \W@&0asts are similar to those in the O
season at the CASTNET and NCDC sites but wordeeaSEARCH sites with MBs of 15.9-
30.8°, 38.7-46.7°, and 22.2-46.6° and MAGEs of &B8& °C, 92.8-97.5 °C, and 86.7-97.6°C
against data from CASTNET, NCDC, and SEARCH, respely. Comparing to the
seasons, MBs of Precip during winters are smalldreaNCDC sites but similar or slightly
worse at other sites, with NMBs of 56.1-60.1%, 148242%, 36.9-67.3% against data from
CASTNET, NCDC, and GPCP, respectively. As showRigure S1, the forecasted Precip is
overpredicted in winters over most areas in thaigtron domain. The spatial distributions of
forecasted Precip with GPCP Precip correlate etdwdr detter in winter than in the;Geasons,
with higher R values of 0.2-0.7. Similar to the $2asons, the model simulates well LWDOWN
but moderately overpredicts SWDOWN in winters. Reddy larger underpredictions occur in
CF, with NMBs of -23.9% to -18%, leading to slighthrger underpredictions in COT than those
during the @ seasons. Comparing to the €2asons, the R values are generally higher for all
meteorological variables except for CF and COTrywinters, indicating that the model can
better simulate the spatial/temporal variationmoft meteorological variables during winters
than in warm seasons.
3.2 Discrete, Spatial, and Temporal Evaluation of @face Chemical Forecasts

The chemical performance during May 1, 2009-Felyr@8 2012 has been evaluated in
Yahya et al. (2014a). Table 2 summarizes domaimrpeaformance statistics for chemical
species at surface and chemical column abundancegydhree @ seasons and three winter
seasons during May 1, 2012-February 28, 2015.
3.2.1 Ozone Seasons

During the three @seasons in 2012-2014, as shown in Table 2a, tkeme 1-hr Q

mixing ratios are well forecasted with NMBs withith5% against data at AIRNow, AQS,
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CASTNET, and SEARCH (except for SEARCH in 2013 vehtre NMB is 17%). Maximum 8-
hr O; mixing ratios are also well forecasted with NMBigh +15% in 2012 and 2014 but
slightly higher NMBs (15-22%) in 2013 at all sitelsarger overpredictions in maximum 1-hr
and 8-hr @ mixing ratios in 2013 comparing to 2012 and 204 be caused by higher warm
biases in T2 and greater overpredictions in/ledicated by NMBs of 36% for NO and 56% for
NO at the SEARCH sites). Higher T2 cause higher eaanssof biogenic volatile organic
compounds (BVOCSs), which also contribute to highgformation. The high positive biases in
NO;and other trace gases such as CO andabe SAERCH sites may be caused by
overestimation of their emissions and also theafid®-km that cannot represent emissions at
those sites. Pan et al. (2014) showed that thefusever NQ, emissions projected for 2012 than
those in 2005 can reduce the positive biasgfo@cast during July 2011. Although NO
mixing ratios are also significantly overpredictad2014, smaller warm biases in T2 in 2014
than in 2013, resulting in lower BVOCs emissiong] thus smaller @overpredictions.
Although there are no observed BVOCs emissionsnairohg ratios for evaluation, the NMBs
of OCs are 15% in 2013 but 1% in 2014 and seconal@anic aerosol (SOA) dominates OC in
southeastern U.S., supporting higher BVOCs emissaoid mixing ratios in 2013 than in 2014.
Figure 1 (a) compares several discrete statistiGy against data from AIRNow for the sixO
seasons during 2009-2015. The MBs range fromte2839 ppb and -1.8 to 6.9 ppb for
maximum 1-hr and 8-hr £mixing ratios, respectively. The highest and tbeosd highest
NMBs for the maximum 1-hr and 8-hi@ixing ratios occur in the £seasons in 2013 and
2009, respectively, with NMBs of 15% and 17.0% @12 and 9.6% and 8.5% in 2009. The
model’s skill in terms of NMEs, RMSEs, and R valigsverall similar among all six{O
seasons. NMEs, RMSEs, and R values are 19.9-26.3%:17.0 ppb, 40-60% for maximum 1-

hr O;, and 19.6 to 27.5%, 11.4-14.2 ppb, and 37.5-60%Eximum 8-hr @ At sites from
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339 other Q measurement networks such as CASTNET, AQS, andREEAthe performance

340 statistics for Qin Oz seasons during 2012-2015 in this work are ovemalilar to those in 2009-

341 2012 shown in Yahya et al. (2014).

342 Figure 2 shows forecasted maximum 1-hr and 84m@ing ratios overlaid with all

343 available observations during the thregs@asons in 2012-2014. Figure S2 shows the

344 corresponding spatial distributions of MBs. In 20tt# model overpredicts at many sites in NC,
345 GA, KY, and AL when the observed maximurg @ixing ratios were below 45 ppb, leading to
346 the largest overpredictions among threes€asons and relatively low R values of 0.4-0.5. In
347 2012, the model captures well the highr@ixing ratios in MD, northern GA, eastern TN,

348 western OH, northwestern WV, and regions alongtirder of IN and KY, although it tends to
349 overpredict at some sites in NC, GA, and KY andarpckedicts at some sites in IL, IN, and OH.
350 The overpredictions and underpredictions ga@different sites over different time periods

351 compensate, leading to relatively good R valugd®0.6. In 2014, the observed Mixing

352 ratios are slightly lower than 2012 and 2013, pdytibecause only forecasted results from May-
353 July (MJJ) are averaged (Note that the resultsugust-September were lost due to the failure of
354 backup drives containing such data). The modelucaptwell the high ©mixing ratios in NC

355 (including the hot dots in western NC), GA, IN, KYA, although it underpredicts a few hot
356 spots in MD and the border regions between OH BindSimilar spatial distributions and

357 correlation are found for maximum 8-hr mixing ratidespite slightly larger overpredictions at
358 some sites in NC, VA, WV, GA, and AL in 2012, artdveost sites in 2013. Figure 3 compares
359 forecasted and observed hourly@ixing ratios at the selected six urban sitese odel

360 reproduces well their observed diurnal and dailyatens at all six sites in 2012 and MJJ 2014.

361 Larger discrepancies are found at all cities, itipalar, Birmingham, Atlanta, and Louisville.
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As shown in Table 2a, forecasted P)\doncentrations agree very well with the
observations from AIRNow with NMBs of -4% to 15%dafntom STN with NMBs of 9-12%, but
moderately overpredicted at the IMPROVE and SEARSes, with NMBs of 8-25% and 39-
53%, respectively. The PM overpredictions are the results of overpredictiohSQ* and
NOs (no observations of NF are available) at the IMPROVE sites, and;5N0;, and NH*
at the SEARCH sites. The overpredicted inorgaMe Pmay be caused by overestimates in the
emissions of precursors such as M0y, and NH. As shown in Table 2a, the $&nd NQ
mixing ratios at the SEARCH sites are significamtiyerpredicted with NMBs of 99-725% and
49-56%, respectively. The NO mixing ratios ar@alserpredicted by 36% and 222% in 2013
and 2014, respectively. The large biases in thoseupsor gases indicate uncertainties in
projected 2009 emissions that are used for RT-AQ#hd 2009-2015, in particular, such
emissions do not reflect the continuous reductior$0, and NQ emissions since 2009 as
reported in several studies (e.g., Pan et al., 20arm biases in T2 at all sites also contribute
to higher inorganic Plk because of higher photochemical oxidation rategsduhe Q seasons.
Despite overpredictions in WS10 and Precip whicid teo reduce Pl concentrations, the
impacts of overestimated precursor emissions amcthvegases on Pl formation dominate,
leading to a net moderate Ryoverprediction at all sites. Unlike IMPROVE, STahd
SEARCH, inorganic PMs concentrations at the CASTNET sites are mostheymebdicted,
likely due in part to the underestimates of antbggmic of SQ, NO,, and NH at remote sites
and national parks or the impact of their long-atrgnsport from emissions at nearby
urban/rural sites, and in part to the larger watés in Precip than at other sites, which
scavenges more inorganic PMrom the atmosphere at the CASTNET sites. Wihigerhodel
simulates well EC, OC, and TC concentrations alMfeROVE sites, it underpredicts EC, OC,

and thus TC at the SEARCH sites. Such differeaceselated to different site characteristics
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(rural/remote sites in the IMPROVE network vs. urparal sites in southeastern U.S. in the
SEARCH network) as well as possible underestimait&C and OC emissions at the SEARCH
sites during @seasons.

Figure 1 (a) compares several discrete statisti®dvb s against data from AIRNow for
the six Q seasons during 2009-2015. The MBs range fromtel134pug m* and NMBs range
from -10.1% to 14.7%, indicating a very good pariance for PM for all six G; seasons. The
ranges of NMEs, RMSEs, and R values are 35.8-4064%8.7ug m°, and 0.3-0.4,
respectively. The model’s skill in terms of NMERIMSES, and R values is overall similar
among all six @seasons at sites from AirNow, with slightly higiN\WIEs but lower RMSEs
and R values than forecastegdiring all six Q seasons. Comparedttee performance statistics
for PM, 5 at sites from IMPROVE, STN, and SEARCH ip §@asons during 2009-2011 shown in
Yahya et al. (2014), those ins®easons during 2012-2014 are worse (particulalBEARCH sites).
Several reasons may contribute to the worse pedioce of PMs during 2012-2014 than during
2009-2011. First, primary PM emissions and thessions of PMs precursors used in the
simulations may be higher than actual emissionsguhose years (resulted from the use of the
same emissions as 2009-2011). This leads to hmepredictions for inorganic PM concentrations
during 2012-2014 than during 2009-2011. Secondersainties may exist in the spatial allocations
of these emissions in both seasons, leading todgeteeity in model performance at sites from
different networks. This uncertainty may explargler biases in EC and OC predictions during
2012-2014 than during 2009-2011 at SEARCH sité3siseason. Third, T2 predictions show larger
warm biases in @seasons during 2012-2014 than 2009-2011 at SEA&@k] which favor the
formation of (NH),SO, and thus contribute to higher overpredictionslif, BconcentrationsAs
shown in Figures 2 and S2, forecasted;Pbbncentrations agree well spatially with

observations in all threes@easons, indicating that the relatively low R ealmay be mainly
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due to mismatching between forecasted and obséiwmady PM s concentrations. Such
mismatching can be illustrated in Figure 4. Faaraple, in 2012, the model overpredicts M
concentrations at Atlanta when observed conceatrativere relatively low (e.g., July 9-
September 30, 2012), but underpredicts, Ptbncentrations at Louisville when observed
concentrations were relatively high (e.g., Jung@ly-10, 2012). In 2013, hourly Ryl
concentrations at Birmingham and Atlanta are largekerpredicted, contributing to large
overpredictions and low R values of Pdagainst data from SEARCH.
3.2.2 Winter Seasons

As shown in Table 2b and Figure 1(b), unlike thes@asons during whichz@nixing
ratios are overpredicted in some years, the maxitummand 8-hr @mixing ratios are
underpredicted in all winters during 2009-2015. Fighest and the second highest NMBs for
the maximum 1-hr and 8-hrs@nixing ratio occur in the winter seasons in 20042and 2010-
2011, respectively, with NMBs of -18.1% and -17.ir#2014-2015 and -11.9% and -13.5% in
2010-2011. The model’s skill in terms of NMEs, REAS and R values is overall similar among
all six winter seasons at sites from AirNow, witlwer NMEs and RMSEs for both maximum 1-
hr and 8-hr @but lower R values for maximum 8-hg @an the @seasons. At sites from other
O3 measurement networks such as CASTNET, AQS, andREEAthe performance statistics for
Os in winter seasons during 2012-2015 in this wokkalso overall similar to those in 2009-2012
shown in Yahya et al. (20143ince T2 is moderately overpredicted at most sitesg 2009-
2015, the @Qunderpredictions are caused in part by large M@lerpredictions (e.g., an NMB of
-67.2% for NQ in 2014-2015). Cai et al. (2008) evaluated thredasting skills of an RT-AQF
model that uses the CB4 gas-phase mechanism (\eh&holder version of CB05) and reported
much significant underpredictions of OH and H@dicals at two sites in New York city during

January 2004 compared to July 2004. They attribstiett underpredictions to greater
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uncertainties associated with the CB4 mechanisneriosv light and low temperature
conditions. Their analysis of the predicted andesbed CO and NQegression slopes also
showed a much larger discrepancies between thsltyes in winter than in summer, indicating
significant uncertainties associated with the 1889 mobile emission inventories during winter
time. In this work, the average observed and fatechratios of CO/NQat the SEARCH sites
for Oz seasons during 2012-2014 are 28.1 and 29.3, taégggc Those for winters during 2012-
2015 are 17.1 and 25.0, respectively. The largérdnces in the observed and forecasted ratios
of CO/NQ indicate possibly larger uncertainties in mobigssions in wintertime than warm
seasons. As an example, Figure S3 shows the dosrefdots for forecasted and observed CO
and NQ at the SEARCH sites in the 2013 §eason. The forecasted ratios of CO andg &l®
higher than their observed ratios in both the 203 8eason and the 2012-2013 winter, with
slightly larger differences between the two ratiowinter than in the @season. Those
uncertainties associated with winter gas-phase tisnof HO, radicals and emissions may also
contribute to moderate underpredictions iaDall sites, and large biases in CO,Sd NQ
at the SEARCH sites during winters.

As shown in Table 2a, similar to thg €easons, forecasted RPitoncentrations during
winters agree very well with the observations fralRNow with NMBs of 0.8 to 8.3% and
from STN with NMBs of 4.9-8.3%, but moderately gweadicted at the IMPROVE and
SEARCH sites, with NMBs of 57.4-59.3% and 59.7-68,4espectively. Unlike the {3easons,
the PM s overpredictions are the results of overpredictioh®C with NMBs of 80.8-88.7% and
EC with NMBs of 24.4-37.3% at the IMPROVE sitesgdDC with NMBs of 24-33% and SO
with NMBs of 16.3-24.7% at the SEARCH sites. Tbaaentrations of N@are also
moderately overpredicted with an NMB of 16.4% il2@t the SEARCH sites, contributing to

PM, s overpredictions. Overpredictions in both OC atlléad to large overpredictions in TC
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concentrations at the IMPROVE sites. Moderate reglictions in OC dominate over moderate
underpredictions in EC, leading to moderate oveipt®ns in TC at the SEARCH sites. Those
results indicate possible overestimates of prin@@yemissions at all types of sites and
underestimates of EC emissions at urban/rural gitesutheastern U.S. in the SEARCH
network during winter seasons.

Figure 1(b) compares several discrete statisti¢d\bfs against data from AIRNow for
the six winters during 2009-2015. Similar to thes@ason, the model performs very well for
PM; s for all six winter seasons with the NMBs rangingn -10.2% during 2010-2011 winter to
8.3% during the 2012-2013 winter. As discussedahyé et al. (2014a), the underpredictions in
2010-2011 winter are the results of underpredistionnorganic PMs, due possibly to
underestimates in the emissions of precursors as1&0Q, NHz, and NQ during winters. Other
possible reasons for underpredictions of,BEluring 2010-2011 include positive biases in both
Precip and WS10. Different from underprediction®M, s during 2009-2011 winter seasons at
AirNow shown in Figure 1 (b) and STN shown in Yalegal. (2014), the model overpredicts
PM; s during 2012-2015 winter seasons at all sites ffarNow, STN, IMPROVE, and
SEARCH,with larger absolute biases at IMPROVE and SEAR@E&tghan those during009-

2011 winter seasonés discussed in Section 3.2.1, the inaccurategy PM emissions and the
emissions of P precursors, as well as uncertainties in the dpatacations of those emissions
used in the simulations contribute to the worségperance of PMs during winter seasons during
2012-2015 than during 2009-201Comparing to PMs forecasts during the{3easons, the P
forecasts during winters show slightly higher NMVi#f&l R values and similar RMSEs.
Comparing to @forecasts during the winter seasonsBMrecasts during winters show higher
NMEs and R values but lower RMSEs. As shown iuféd@, the model captures well the
seasonal variations of B with higher PM s concentrations during{3easons than during
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482 winters. The model shows better spatial correlatmith higher R values during winters thag O
483 seasons. In particular, the model reproduces akobserved hot spots in GA, FL, MO, IN,

484 MD, and LA during the 2012-2013, 2013-2014, and420015 winters (see Figure 2). As shown
485 in Figure 4, the model reproduces well the obsehadly concentrations of PM at all sites

486 except for Birmingham and Atlanta where overpreditg occur during all three winters.

487

488 3.3 Categorical Evaluation of Surface Chemical Foieasts

489 Figure 5 shows categorical evaluation gf&dd PM s during all six Q and winter

490 seasons. The accuracy is high farf@ecasts during all six £and winter seasons, with A

491 values of 94-97.7% durings@easons and 98.7-100% during winters. High Aesladicate

492 higher percentage of forecasts that correctly pteah exceedance or a non-exceedance, with the
493 number of non-exceedance dominating for both mamirfithr and 8-hr @mixing ratios.

494 Because the observed and forecasted maximum ld8-an Q mixing ratios during winters are
495 below the threshold values of 80 ppb and 60 pEpeaetively, no values of CSI, POD, B, and
496 FAR can be calculated. Duringg®easons, the ranges of CSl values are 5.2-15.6.8+25.3

497  for maximum 1-hr and 8-hr {mixing ratios, respectively. The relatively lov6Cvalues are

498 caused by relatively high false alarm forecastghdir CSI values for maximum 8-hg @an

499 maximum 1-hr @Qindicate a better skill in forecasting medium ramg G; mixing ratios during
500 the daytime than the daily peak @ixing ratios. For the same reason, the modelgghigher

501 POD values for maximum 8-hrs@han for maximum 1-hr with a range of 26.6-46.7 and 17-
502 31.3, respectively. The model gives similarly IBwalues for both maximum 1-hr and 8-hg O
503 mixing ratios. The ranges of B values are 0.6an@ 0.6-4.2 for maximum 1-hr and 8-hs, O

504 respectively; they are greater than 1 in 2009, 2ahd 2014, indicating overpredictions in those

505 vyears that are consistent with NMBs shown in Fiduta). The FAR values are high, ranging
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from 67-96.1% and 48.6-88.9% for maximum 1-hr asid &; mixing ratios, respectively. High
FAR values indicate that a frequent occurrence@ddasted exceedance that did not occur.
Comparing to @forecasts, the A values for BMforecasts are lower, ranging from 70.7-
83.2% for Q seasons and 83.5-85.9% for winters, indicatingdheurately forecasting PMis
more challenging than forecasting. Orhe ranges of CSl values are 10.3-27.9%43is€asons
and 14.8-22.2% in winters, which are slightly higtiein those for ©forecasts during most
seasons. The POD values range from 15.3-40.1% se&sons and 28.5-38.3% in winters,
which are similar to those fors@orecasts during £seasons. B values for BMforecasts are
smaller than those for{orecasts, ranging from 0.6-1.3 in 8easons and 0.7-1i2 winters.
FAR values for PMs forecasts range from 44.6-75.9% ip$2asons and 61.3-76.6% in winters.
They are lower than FAR values of @recasts during £seasons.
3.4 Comparisons ofSurface O3 and PM; s Forecasting Skill with Other RT-AQF Models
Tables 3 and 4 compare the discrete and categpecdrmance evaluation for surface
O3 and PM sforecasting in this work with those reported oveslbr a region in the U.S. in the
literature. Note that those evaluations did nottheesame threshold values and observational
data for evaluation nor that they were performeer dlre same domain and forecasting period.
The statistics against AIRNow only and againstlatasets are provided for Yahya et al. (2014)
and this work because all other evaluations wesedan AIRNow. The two sets of
performance statistics of max 1-hr and 8-Bifl@m WRF/Chem-MADRID in this work are
within the range reported, with better performabased on AIRNow than most other models.
For example, NMBs and NMEs of max 8-hg f@lom WRF/Chem-MADRID are -17.7% to 17%
and 17.8-33.8%, compared to -2.1% to 25.2% and-38.4%, respectively, reported in the
literature. The performance against AIRNow is bdttan those against all datasets in this work

because the model performs worse when the datatirelS8EARCH sites are included. For 24-h
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PM, s evaluation using all datasets, while the MBs fitbim work fall into the reported range, the
NMBs for the Q season and the NMEs for the winter seasons gligktieed the upper range of
report values because of inclusion of all dataisetisis work rather than AIRNow only as did in
most other work. Using AIRNow only for evaluatidhe MBs, RMSEs, NMBs, NMEs for 24-h
PM; s simulated by WRF/Chem-MADRID are -0.5 to 1.4, 5.7; -4 to 15%, and 36-40%,
respectively, during the {3easons, and 0.2 to 0.8, 5.5-6.1, 0.8 to 8.3%42ar6i47.4%,
respectively, during the winter seasons, whichsanaller than corresponding values from most
other models, namely, -3.2 to 6.2, 5.5-15.9, -232%, and 41.2-80%, respectively. As shown in
Table 4, the model’s categorical performance for Pidrecasts is comparable to or better than
those reported in the literature. The FAR valweariax 8-h Q during the @ season are slightly
beyond the reported range, because of a moderatprediction in the 2013 {Zeason.
3.5 Discrete and Spatial Evaluation of Column Chernoial Forecasts

Table 2 also shows discrete statistics for colunassrabundances of CO, SO, and
HCHO, TOR, and AOD during £seasons and winters during 2012-2015. Column &054)
are moderately underpredicted with NMBs of -42.20636.5% and -55.3% to -54.9%,
respectively, in @seasons during 2012-2014. The underpredictions\aen larger in winter
for both species, with NMBs of -50.7% to -48.2% and.2% to -73.2%, respectively. As
shown in Table 2a, the surface CO ang B(iXing ratios are overpredicted at the SEARCH
sites. The overpredictions at surface but unddigtiens in their column masses indicate
inaccurate vertical profiles used in their boundaogditions. For example, the BCONs of CO
used in the forecasts vary from 72.5-96.4 ppbeastirface layer to 50-65 ppb in upper
troposphere during July, and from 125-168 ppb attirface layer to 50-65 ppb in upper
troposphere during January. The vertical profie€0 derived from MOPPIT over the

continental U.S. show a value of 105 ppb at suréame65 ppb at the tropopause during summer
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and a value of 125 ppb at surface and 68 ppb dtdapepause during winter (Zhang et al.,
2009). While the vertical profiles of CO used reflthe observed seasonal variations, the upper
CO mixing ratios used are too low comparing toM@PITT-derived CO levels in both seasons,
and the surface CO mixing ratios are also low irs€asons, leading to moderate to significant
underpredictions in column CO ins®easons and winters. The BCONs of 8€ked in the
forecasts vary from 0.04-1.35 ppb at the surfagerlto 0.01-0.067 ppb in upper troposphere
during July, and from 0.103-1.70 ppb at the surfager to 0.01-0.067 ppb in upper troposphere
during January. Those values are also too lowpoesent BCONs over southeastern U.S.
While column NQ is moderately underpredicted with NMBs of -35.39633.4% in the ©
seasons, NMBs during winters are much smaller,ingrfgom -7.9% to 26.2%, indicating a
more realistic vertical profile used in winters qmaming that in @ seasons. The BCONs of NO
used in the forecasts vary from 0.082-0.181 pphesurface layer to O ppb in upper
troposphere during July, and from 0.316-4.23 ppiheturface layer to 0-0.0057 ppb in upper
troposphere during January. Figure 6 (a) showsasmhstributions of column N& with overall
good spatial correlation and R values of 0.7 afdif.the 2012 @season and 2012-2013
winter, respectively. In addition to uncertaintie8BCONSs, inaccurate/missing emissions and
inaccurate vertical allocations of emissions maytgbute to the moderate to large
underpredictions in column CO, g@nd NQ. For example, while wildfire and lightening NO
emissions are included, large uncertainties emigéir magnitudes and spatial distributions.
Volcanic eruption and/or degassing may make impocantribution to column SO

Unlike column CO, S@ and NQ, Column HCHO is moderately overpredicted with
NMBs of 13.1-39.9% in @seasons but largely underpredicted with NMBs 8£650 -51.5% in
winters. The BCONs of HCHO used in the forecasty rom 0.599-2.47 ppb at the surface

layer to O ppb in upper troposphere during Julg, fsom 0.292-0.404 ppb at the surface layer to
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0 ppb in upper troposphere during Januaihe performance statistics show that the BCONSs of
HCHO are too high in ©seasons but too low in winters. Another possiblece of errors in
simulated column HCHO may come from inaccurate émgemissions of isoprene, which can
produce secondary HCHO through its photochemicalation reactions.

TOR is slightly-to-moderately underpredicted witMBs of -15.4 to -4.5% in ©
seasons but moderately overpredicted with NMBs9d®-25.1%. The BCONs of{ised in the
forecasts vary from 26.3-44 ppb in July and fron8229.1 ppb in January at the surface layer to
100.5 ppb in upper troposphere during both montAkhough @ can be formed through
photochemical oxidations of precursor gases sudtasHCHO, and CO above the surface
layer, the mixing ratios of those gases are gelydml, particularly in mid-to-upper
troposphere. Therefore, the column concentratidoi3s @re regulated primarily by BCONs. The
performance statistics show that the BCONs o&f@ more realistic in £seasons than in
winters during which the BCON values are too highepresent @vertical profile, leading to
moderately overpredicted TOR. AOD is moderatelgrpvedicted with NMBs of 14.4% to
47.6% in Q seasons, and significantly overpredicted with NMBS89.4% to 95.7% in winters.
The overpredictions of AOD are the results of ovedprtions of PMs at surface and also
possible overpredictions of RPMin upper layers, indicating that the BCONs usediglh 5
composition may be too high in both @nd winter seasons. Figures 6 (a) and (b) shotiaspa
distributions of TOR and AOD. While forecasted TO®rrelate well with OMI-derived TORSs
with an R value of 0.7 during the 2013 §®2ason, they do not correlate in the 2012-2018win
indicating a need to adjust the vertical profiledfin winter. The forecasted and MODIS-
derived AOD agree better spatially in the 2012-2@4r&er than in the 2012 {3easons.

Two sensitivity simulations are performed to fentistudy the importance of BCONs on

column forecasts including a sensitive simulatianr August 2012 using satellite-constrained
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BCONSs for CO and a sensitive simulation during Delser 2012 using satellite-constrained
BCONSs for Q. Those sensitivity simulations show large improeeirin simulated column CO
and TOR. Figures 7 and 8 compare the spatialloligions of satellite-derived CO and TOR and
the two simulations in August 2012 and Decembef26@dspectively. The use of satellite-
constrained BCONSs for CO and TOR improves the satedl CO and TOR substantially. The
MB, NMB, and NME of CO from the sensitivity simuilaih are -0.2, -10.6%, and 18.2%,
respectively, comparing to -0.8, -40.6%, and 40f8%% the baseline simulation. The MB,
NMB, and NME of TOR from the sensitivity simulatiame -0.2, -0.01%, and 0.1%,
respectively, comparing to 11.7, 44.8%, and 44.8%mfthe baseline simulation. Similar
improvements are expected for other column vargainleluding column N@in O3 season and
column SQ and HCHO in both season.
3.6 Trend analysis for multiple years

Given interannual variability in climate and em@sss, it is useful to assess the robustness
of the model in forecasting the relative changegims of magnitudes and signs under different
climate conditions, as well as the interannualalality from the year of reference.
3.6.1 Meteorological Variables

Figure 9 compares observed and simulated vari&tgmals for T2, Precip, WS10,
SWDOWN, LWDOWN, and CF. Note that the trends fe¥[3OWN, LWDOWN, and CF are
only plotted for the 2011-2014;@easons and 2011-2015 winters because the ugpemntadel
outputs during 2009-2010 were not available du@itares of backup drives containing such
data. The model forecasts well the observed clwingerms of both magnitudes and signs, as
well as the interannual variability of T2 and WSa@®oth Q and winter seasons relative to their
values in 2009. It simulates reasonably well Fer bbserved interannual variability of Precip at

the CASTNET sites, but not well for the observedraes in magnitudes of Precip. The changes
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in terms of magnitudes and signs as well as interalnvariability relative to their values in
2011-2012 for SWDOWN, LODOWN, and CF are well captlin winters, but in @seasons,
while the model reproduces well both the magnituafeébe changes and the interannual
variability of LWDOWN, and the interannual variabjlof SWDOWN and CF, it overpredicts
the increases in SWDOWN but underpredicts the asge in CF.
3.6.2 Chemical Variables

Figure 10 compares observed and simulated i@rigends for surface £nixing ratios,
surface PM; concentrations, column mass abundances of CQ@, 0, and HCHO, TOR, and
AOD. Note that the trends for column variables@ly plotted for the @seasons during 2011-
2014 and winters during 2011-2015 for the aforemert reason. Relative to the 2009 O
season, the observed @ixing ratios from AIRNow are higher duringg®easons in 2010-2012
and 2014 but are lower ing@eason in 2013, this trend is not well capturethibymodel, as it
forecasts slightly lower ©n 2010 and 2014 £seasons, and slightly higheg @@ other Q
seasons. While PM forecasts during £seasons generally follow the observed trendselarg
differences occur in the magnitudes of the changl,greater increases in 2010-2011 but
greater decreases during 2012-2014. Althoughifferehces in the magnitude of the changes
for forecasted @are smaller in winters than ins®Geasons, the observed and forecasted O
mixing ratios change in different directions, ithe observed ©mixing ratios either increase or
decrease slightly, the forecasteglf@ixing ratios continue to decline during 2010-2@didters.
The large differences in magnitudes and signs mremaorecasted and observed trends obBEM
concentrations during winters comparing t9g@asons, however, the forecasted and observed
changes of PMs concentrations are within £10%. The forecasteti@served changes in
column CO are small, within 3% ins@easons and within 1% in winters but they haviewint

signs. The forecasted column S&ptures well the observed trends in magnituddssigms for
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column SQ in the Q seasons, larger differences exist in both magaiaud sign in winters.
Although the forecasted and observed changes fomtoNG; are generally within 10%, larger
differences exist in magnitude and sign comparintpose for column CO and $OThe OMI-
derived TORs decrease iy 8easons during 2012-2014, and increase duringssgiof 2012-
2013, 2013-2014, and 2014-2015. Among all colurmeg, the forecasted column HCHO
shows the largest differences in thgg@asons in terms of both magnitude and sign.
Uncertainties in satellite retrievals of column HGkhay contribute in part to such large
discrepancies between forecasts and satellite@ktobservations. For example, De Smedt et al.
(2008) reported errors in HCHO retrievals of (0.8)2 1d°molecules cif, which are on the
same order of magnitudes or even larger than the MBhe forecasted HCHO column for all
seasons. The differences in magnitude of the clsaingsolumn HCHO are smaller in winters
but the signs are opposite in 2012-2013. Thechwsed TORSs show a slight decrease in 2012
O3 season and slight increases in 2013 and 2Q1se&ksons, and slight decreases in winters of
2012-2013 and 2013-2014 as well as a slight inereawinter of 2014-2015.

The forecasted AOD captures the decreasing trendgl@s; seasons of 2012-2014, but
with much smaller magnitudes of the changes (btoui8% versus 40%, respectively). While
MODIS-derived AOD shows a large decrease (by W\284) from 2011-2012 winter, the
forecasted AOD shows a large increase (by up to)28%inter. The relatively large
discrepancies between satellite-derived and fotedalumn variables such as column N@d
HCHO, TOR, and AOD in both £and winter seasons, and column,@0Owinters indicate a

need to adjust the vertical profiles of these gasesPM composition in the BCONS.

Summary and Conclusion
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An online-coupled meteorology-chemistry model, WR#ém-MADRID, has been
deployed for RT-AQF in southeastern U.S. since 4008ix O; seasons and six winters. A
comprehensive evaluatiai meteorological and chemical forecasts is peréatmsing surface
and satellite-derived observations in terms ofiapdistribution, temporal variation, and discrete
and categorical performance statistics. The melegical evaluation shows moderate to large
biases for T2, RH2, WS10, WD10, Precip, SWDOWN, @i COT, indicating some
limitations in the YSU PBL scheme, the Monin-Obukisurrface layer scheme, the Purdue Lin
cloud microphysics module, and the Grell-Devenyeamble scheme. In particular,
uncertainties exist in the model treatments of PBicesses (e.g., inaccurate representations of
surface drag), the dynamics, thermodynamics, ardopinysics of clouds, as well as aerosol-
radiation-cloud-precipitation interactions (e.@e missing treatments of sub-grid cloud
feedbacks to radiation). Since the forecasts das® data assimilation, the agreement between
meteorological forecasts and observations is npéebed to be comparable with the simulations
that use data assimilation. The meteorologicadasts for most variables except for WS10,
Precip, and COT in this work are therefore deermduktacceptable. While updating
WRF/Chem-MADRID based on the latest WRF/Chem versioould help reduce some of those
uncertainties with updated schemes and treatmemtsinuous development and improvement of
PBL schemes and cloud parameterizations are imdttture work to improve meteorological
forecasts, which will in turn improve chemical foasts.

WRF/Chem-MADRID shows consistently good skills @yand PM s forecast in terms
of both categorical and discrete statistics du#i0§9-2015. It performs well in boths@nd
winter seasons with most NMBs within £15% fog fOrecasts against observations from
AIRNow, AQS, CASTNET, and SEARCH. The NMBs for RMorecasts are within +15%

against observations from AIRNow and STN, but lage to +68%) against observations from
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IMPROVE and SEARCH. Larger biases are also foundgé&condary Pl against surface
observations at IMPROVE and SEARCH, and also faresaolumn variables (e.g., column NO
in O; seasons, TOR, column HCHO, and AOD in winters,@@d and column CO and S@
both @ and winter seasons) against satellite data. Tihiases are due possibly to uncertainties
in simulated meteorology (e.g., T2, Precip, and 0JSémissions (e.g., biogenic/wildfire
emissions and winter mobile emissions), and BCG\s (inaccurate BCONSs for seasonal and
inter-annual variations for CO, NOSQ,, O3, HCHO, and PMls composition), as well as
limitations in chemical and aerosol treatments.(ehg production of OH radicals from CBO5 in
winter, aerosol thermodynamic partitioning, and SfoAnation). Comparison of model
performance during 2012-2015 with that during 2@092 shows thahe inaccurate primary PM
emissions and the emissions of R)\drecursors, as well as uncertainties in the dpatacations of
those emissions used in the simulations contritnutbe worse performance of B¥during both Q
and winter seasons during 2012-2015 than durin§-2001.2.

Despite those biases, the model’'s performancemnstef surface @and PM s forecasts
is overall consistent with or better than the penfance of other RT-AQF models reported in the
literature for different periods over different dams. Although the model shows overall good
skills for meteorological and chemical forecastthatsurface, inaccurate representations of
species vertical profiles can potentially affecthometeorological and chemical forecasts at the
surface because of turbulent mixing and convedioed updraft and downdraft movements and
because of the feedbacks of radiative species @&gNO,, HCHO, and PM composition) to the
radiation calculation in the model. The impactelmémical BCONs on air quality simulations
have been shown in several studies (e.g., Giordaab, 2015; Yahya et al., 2015b) and in this
work. Therefore, the vertical profiles of BCONstbbse species should be constrained with
satellite-derived observations to more realisticedpresent vertical and seasonal variations.
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721 Forecasted changes in most meteorological varia@xespt for CF generally reproduce
722 well the observed trends in terms of magnitudesagd and interannual variability. While small
723 changes occur in observed seasonal-mean maximuraiddrB8-hr @ concentrations from

724  AIRNow since 2009, those for PAMshow greater decreases and stronger inter-annual

725 variabilities than @ reflecting the effects of emission reduction<sif009. Forecasted; O

726 levels show weaker inter-annual variabilities tolaserved @levels during all @and winter
727 seasons. Forecasted PMevels resemble their observed increasing trerads 2009 to 2011
728 and declining trend from 2011 to 2014 duringg@asons and remain nearly constant during
729 winter. Such variabilities are mainly attributedcteanges in meteorology and meteorology-
730 dependent biogenic and wildfire emissions. Largestrepancies are found in the forecasted
731 and observed changes in AOD and column gases ingl@D, NQ, SO, HCHO, and @, due
732 mainly to inaccurate representations of the verpoafiles of the BCONSs of those gases and PM
733 composition. More accurate meteorological foressamtthropogenic emissions, and

734 meteorology-dependent emissions (e.g., biogenidfivaé, and volcanic), upper BCONSs for
735 chemical species, and model treatments of cherar@hberosol processes should improve the
736 model’s ability in reproducing not only the obsediwas but also the interannual and inter-

737 seasonal variation trends in terms of magnitudesagmfor major chemical species of concerns.
738 When resources become available, several limitatiohis work should be addressed.
739 These may include the code migration of WRF/ChemENRD into the latest version of

740 WRF/Chem, the refinement of configurations usingilable latest physics and chemistry

741 options (e.g., the use of urban canopy model, @odsdirface roughness treatments, and the
742  multi-scale cumulus parameterization), and updatesnissions and lateral BCONs including
743 using real-time forecasted emissions, and morésteaBCONSs derived from satellite retrievals

744 or dynamic BCONs from a validated global RT-AQF rabd
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Variable Network 2012 2013 2014
oot | Mean | cor | mB Mage | 't MeAM | cor | mB mace | 'oat | NeAM | conr | MB MAGE
CASTNET | 222 | 228 | 06 05 42| 212 233 07 2.1 4. 212 328 07 | 21| 40
T2 (°C) NCDC 237 | 243 | 06 06 40| 230 248 07 18 3y 249 724 o7 | 17| 39
SEARCH | 249 | 258 | 04 0.9 40| 241 267 05 2.6 3. 295 625 03 | 21| 47
CASTNET | 763 | 665 | 03| -98| 175 782 618 3 164 203 374 605 | 04 | -138 186
RH2 (%) NCDC 744 | e75| 03| 68| 178 785 64 3 4l 196 174 606 | 04 | -135 200
SEARCH | 740 | 635 | 03| -104 185 804 596 02 2055 232 457 547 | 03 | -197] 231
CASTNET | 20 | 37 0.4 17 19 18 3.7 0.2 18 2.4 25 41 ola 16 | 21
E’r"nssﬁ‘)) NCDC 3.6 38 0.2 0.2 18 36 3.9 0.2 0.4 18 37 30 202 | 18
SEARCH | 22 31 03 0.9 13 21 2.7 03 06 1.3 2.2 25 203 | 12
CASTNET | 2018 | 2248] 07| 230] 791 207p 22355 o7 163  84.21956 | 2247 06| 290 857
W?j?lo NCDC 1865 | 232.1] 07| 456 852 1878 2352 of 4700 8811004 | 2419| 06 | 424 861
SEARCH | 2007 | 2195 06| 189 830 206D 2305 04 2al4 9432244 | 2261] 03| 17| 762
CASTNET | 02 03 | 00 01 0.4 0.2 03 0.0 0.1 04 02 0B oo o1 | o4
(ﬁ]’rﬁﬁiﬂ) NCDC 3.2 4.7 0.0 15 5.3 2.8 4.1 0.0 1.4 4.6 32 48 111 4.9
GPCP 0.2 03 | 04 01 01 02 03 0.4 0.1 04 02 ob o100 | o1
S‘(’\‘i\?gg‘;'\‘ CERES | 2452 | 279.7| 06 | 344 345 2307 2819 o1 4202 4220442 | 3115| 04| 673 673
L\ZVVS%VQI)N CERES | 3999 | 3910, 10| -89| 119 397.8 3985 10 0.1 ala 98@| 3905| 10| -81 81
CFWm? | MopIs 578 | 530 | 09 | -48| 64| 644 5632 08 8. 9] 646570 | 06 | 96| 108
coT MODIS 142 | 54 | 03| 88| 88| 149 59 01 9.0 9. 135 64 01 | 89| 89
Table 1b. Discrete statistics of meteorological vables for winter seasons.
Winter Season (December-February)
Variable Network 2012-2013 2013-2014 2014-2015
Meap | Mean | cor | MB |mace | Mean | Mean | con | vp  |mage | Mean | Mean ey | wg | MAG
CASTNET | 57 | 67 | 09 | 10 35| 33| 43| 09 o4 3.4 28 35 9 07 | 37
T2 (°C) NCDC 81 | 93 | 08 | 12 37| 62| 74| 09 1.2 3.1 56 64 8 08 | 37
SEARCH | 101 | 52 | 04| 50| 87| 79| 50 01 3 7. oo 111 06 11| 40
CASTNET | 750 | 690 | 04| 60| 159 72d 701 04  -15 159 274 702 | 04 | -41| 151
RH2 (%) NCDC 763 | 704 | 04| 60| 160 741 699 04 42 160 074 697 | 05 | 43| 151
SEARCH | 733 | 595 | 04 | -139] 215 737 e 04 121 2104 927 720 | 02| 63| 162
CASTNET | 24 | 50 | 03| 25 28| 29| 49| 02 19 2.4 2. 45 2 16 | 24
z’r‘:lssﬁ()) NCDC 43 5.1 03 0.8 2.4 42 48 0.2 0.4 2.4 42 ah 2 02 | 22
SEARCH | 25 | 41 | 06 | 15 17| 24| 39| 05 14 1.1 28 2k 302 | 11
CASTNET | 2012 | 217.1| o5 | 159 o915 208k 2372  of  2d8  8d30123| 2431 o6 | 308/ 9904
W'?f)uo NCDC 2068 | 2456| 06| 387 969 207B 2533 oF 485 98007 | 2564| 07| 467 974
SEARCH | 2127 | 2479| 08| 352 o941 206f 22809 0B 242  o9f62122 | 2588| 09| 466 86.1
CASTNET | 01 | 02 | o1 | o1 03| o01] 02/ 02 o1 04 ol ok 301 | 02
(Fr’nfnff‘iﬂ) NCDC 1.9 27 0.1 0.8 2.7 1.9 25 0.1 0.6 2.4 1.8 2p 104 2.2
GPCP o1 | 02 | 07 ] o1 o1| o01] 02| 04 o1 0.1 ol op o500 [ 01
S‘(’\‘;\?gﬂ;” CERES | 1188 | 1424| 09 | 235 237 1195 1417 09 222 2221184 | 146.7| 09 | 284| 284
L%VVS%‘,’Q’)N CERES | 3234 | 3203| 10| -32| 41| 3142 3183 1 4y s 4ml 3121 10| 21| 38
CFWm? | MODIS 644 | 500 | 07 | -144] 144] 644 52 08 116 117 586 500 | 08 | -157] 157
coT MODIS 178 | 54 | 02 | -123| 123| 188 56 04 132 132 218 49 | 01 | -133] 133

1 Data pairs only include simulated and observed dating May, June, and July in 2014 because sfdbsimulated data in August and

September, 2014 due to failure of backup exteraal drives containing such data.

2 Mean Obs: Mean observed data; Mean Sim: Mean atedibata; Corr: Correlation coefficient; MB: Mdaias; MAGE: Mean Absolute Gross
Error; N/A: Data not available.
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Variable Network 2012 2013 2014
Mean Mt_ean Corr NMB NME Mean Mt_ean Corr NMB NME Mean Mt_ean Corr NMB NME
Obg | Sim (%) (%) Obs | Sim (%) %) | Obs | sim ) | )
CO (ppb) SEARCH | 1616 | 2671| 04 65.3| 971 1778 264 0.3 485  74§51785 | 322.7| 0.4 80.8| 99.9
SO, (pph) SEARCH 1.0 1.9 0.0 99.0| 1950 05 1.9 0 3080 3620 03 28 03 | 7250| 7360
NO (ppb) SEARCH 1.9 14 01 | -260| 1350 12 16 0.2 360 1740 1|5 4.9 01 | 2220| 3390
NO (ppb) SEARCH 4.6 6.8 0.4 490 1190 41 6.4 04 560 1180 51 0 § 05 56.0 | 120.0
HNOs (ppb) | SEARCH 0.3 05 0.1 505| 1243 03 0.4 0.1 570 1190 o3 4 d 01 230 | 950
AIRNow 525 | 524 05 0.0 220 456 524 04 150 260 491491 0.4 00 | 230
Max 1-hr O AQS 524 | 521 0.6 10| 220| 458 511 0.4 120 2800 NANA | NA | nA | NA
(ppb) CASTNET | 513 | 498 05 30| 220 463 52 0.4 120 250 550. 51.0 04 10 | 190
SEARCH 53.3 | 558 0.6 5.0 210 463 544 0. 170 2700 48.3502 05 40 | 240
AIRNow 474 | 4715 05 0.0 220 410 a7 0.4 170 2700 445450 0.4 10 | 230
Max 8-hr Os AQS 468 | 465 05 10|  220| 403 464 0.4 150 2710 NANA | NA | NA | NA
(ppb) CASTNET | 458 | 451 05 20| 230| 371 434 3 180 280 340. 417 03 40 | 200
SEARCH | 473 | 497 0.6 5.0 210 407 493 0.4 220 290  43.0457 05 60 | 260
AIRNow 108 | 11.0 0.3 2.0 38.0 9.8 11.2 0.4 150 400 10.2 97 0.3 -40 | 360
24;1“;2/?9 IMPROVE 7.7 96 03 250| 440 76 95 0.4 250 440 80 86 0.4 80 | 330
(ng M) STN 111 | 120 0.3 9.0 380 104 117 0.4 120 390 NANA | NnA | NnA [ NA
SEARCH 9.8 13.6 0.2 39.0| 66.0 9.1 13.9 0.3 530 740 NlA /AN| NA | NA | NA
CASTNET | 08 08 06 70| 290 08 0.8 0.8 -4, 250 oy ol 05 | -120| 290
NH4* IMPROVE - - - - - - - - - - - - - - -
(ng m?) STN 05 09 04 | 640 880| 05 0.8 04 s8p 870 NA NhANA | wA | NA
SEARCH 0.8 0.9 0.2 6.0 62.0 07 0.8 0.3 140 650 NA  NANA | NA | NA
CASTNET | 26 25 0.4 30| 290 24 2.6 05 6.0 27p 23 2l 02 90 | 250
so? IMPROVE 2.1 24 03 180 | 470 2.0 2.4 0.4 160  49)0 190 2l1 04 100 | 400
(ng m?) STN 2.2 26 03 160 | 46,0 2.1 2.6 04 200 510 NA  NANA | NA | NA
SEARCH 2.3 2.9 0.2 2900| 66.0 2.1 3.0 0.3 40 720 NA O NANA | NA | NA
CASTNET | 04 03 05 | -180| 620 0.3 0.2 0.6  -320  60[0 o4 20 06 | -480| 67.0
NOs IMPROVE 0.2 03 03 540| 13000 02 0.3 0.3 470 1360 02 .3 0 03 250 | 135.0
(ng m?) STN 0.4 04 03 80| 890 04 03 03] 240 80 Np AN NA | NA | NA
SEARCH 0.2 03 0.0 480| 2070 02 0.3 0.9 830 2330 NIA /AN| NA | NA | NA
EC IMPROVE 0.2 02 03 0.0 54.0 02 0.2 05 5. 540 0p o2 2 1.0 | 540
(ng ) SEARCH 15 05 01 | -67.0| 880 0.9 0.5 0.0 400  82[ N/A N/A N/A NA | NA
oc IMPROVE 1.3 1.9 03 50.0 | 73.0 1.2 13 0.1 150  60[0 12 102 01 10 | 56.0
(ngm?) SEARCH 3.0 2.9 0.2 60| 570 22 16 02 280 6o NA AN| NA | NA | NA
IMPROVE 15 22 03 420 66.0 14 16 0.2 140 570 14 1l5 0.1 10 | 540
(pgfn,a) STN 2.8 2.7 05 | -30| 370| 27 2.0 01 =270 a6 Np AN| NA | NA | NA
SEARCH 2.3 3.0 03 30.0| 89.0 3.0 2.1 03 200 530 N AN| NA | NA | NA
Column CO
(10" molec. MOPITT 2.1 1.2 0.5 -42.2 42.2 20 1.3 0.5 -36/5 365 20 31 03 -37.2 37.2
cm?)
Column NO;
(10" molec. oMl 1.7 1.1 0.7 -35.3 45.9 16 1.1 0.7 -33/4 429 7 11 07 -33.5 | 408
cm®)
CO'L(‘B“S)SOZ oMl 025 | 0.11 05 | -549| 592 025 o011 0.5 551 588 .250 | 0.11 04 | -553| 587
Column
HCHO (10 oM 8.6 9.8 08 131| 318 76 10.7 0.8 398 524 82 29 o7 132 | 353
molec. cm?)
Co'(‘fDTJ’; Os oM 394 | 333 | 07| -154| 168/ 380 36 0.6 58 op 637. 359 | 07 | -45| 81
AOD MODIS 0.2 0.2 0.0 144 | 236 0.1 0.2 0.4 476 48l oi 20 -02 | 372 | 438
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Variable Network 2012-2013 2013-2014 2014-2015
Mean Mean Corr NMB NME Mean Mean Corr NMB NME Mean Mean Corr NMB |NME
Obg | Sim (%) (%) Obs | Sim (%) (%) Obs | Sim ) | ©)
CO (ppb) SEARCH | 2009 | 2791| 03 389| 724/ 203F 345]9 0B 69.8  89.32446 | 5141| 05| 1102 122p
SO, (pph) SEARCH 0.8 1.9 01 | 1233 2031 o8 2.6 01 2422 2983 05 36 03 | 6426 6579
NO (ppb) SEARCH 45 2.8 03 | -37.0] 1128 54 4.9 0.3 86 1290 8l 25.9 04 | 199.8| 2634
NO; (ppb) SEARCH 6.4 7.9 0.5 243| 818 75 9.4 0.5 249 790 9lo 3o 05 | -67.2| 710
HNOs (ppb) | SEARCH 0.2 0.4 02 | 1113 1401 02 0.4 04 1147 1559 02 00 00 | -90.7| o914
AIRNow 383 | 338 05 | -116| 195| 364  33. 04 81 175 736 301 02 | -18.1| 234
Max 1-hr O AQS 380 | 331 05 | -128] 217 339 317 0.5 65 205 AN NA | NA | NA | NA
(ppb) CASTNET | 384 | 339 06 | -11.7| 178| 386 337 0.5 128 168 803| 325 05 | -143| 192
SEARCH 376 | 325 06 | -133] 201| 360 313 0.4 132 203 053| 278 0.3 90| 228
AIRNow 356 | 308 02 | -135 226/ 334  30. 0.2 9l 196 .035 288 00 | -17.7| 246
Max 8-hr 05 AQS 338 | 204 05 | -130 243| 204 @ 27. 04 65 239 AN NA | NA | NA | NA
(ppb) CASTNET | 325 | 207 0.5 8.7 182 326 292 0.6 102 167 629 286 06 32| 165
SEARCH 336 | 296 06 | -120 213] 322 28 0.4 130 216 6.42| 259 0.2 17| 254
AIRNow 9.3 10.0 0.4 8.3 42.6 8.9 95 0.3 6.7 arp op 92 03 08 | 440
24|;l:vr| AV | |MPROVE 5.6 8.9 0.4 57.4| 722 5.2 8.4 0.4 508 832 NA  NANA | NA | NA
25
(ng M) STN 9.7 10.2 0.5 4.9 377|102 114 0.7 8.3 459 NIA ANS NA | NA | NA
SEARCH 7.8 12.4 0.2 50.7| 853 76 12.9 0.3 684 890 NIA /AN| NA | NA | NA
CASTNET | 0.9 05 06 | -427| 482 0.8 05 0.6  -320 45 10 .40 06 | 557 588
N IMPROVE - - - - - - - - - - - - - - -
-3
(g m) STN 08 06 04 | -179| 635 07 07 0.7 0.6 636 Nh AN NA | NA | NA
SEARCH 0.8 0.6 02 | -249| 628 0.7 0.6 02 -191 614  NA /AN| NA | NA | NA
CASTNET 18 15 02 | -211| 341 17 15 02  -14  39p 19 13 03 | -31.0| 409
so? IMPROVE 15 15 0.2 33| 513 15 1.4 0.1 7.8 556  NA  NA NA | NA | NA
-3
(ng m) STN 17 16 0.1 58| 537 17 16 05 -4, 476 NIA NA NA | NA | NA
SEARCH 15 18 0.1 247| 688 15 17 0.1 168 624 NA  NANA | NA | NA
CASTNET 15 0.6 05 | -59.8| 66.8 1.1 0.6 0.6  -408 589 15 20 06 | 9.2 902
NOs IMPROVE 0.9 0.6 02 | -334| 864 0.8 06 03 237 o1  NA /AN| NA | NnA | NA
3
(ng m) STN 15 07 04 | -543| 7309 16 11 o5 32l4 71)8 N AaN] nA | Nwa | A
SEARCH 0.6 05 00 | -128] 1192 06 0.7 0.3 1684 1211 NANA | NA | NA | NA
EC IMPROVE 0.3 0.4 0.5 37.3| 749 0.3 03 0.4 244 740 NA O NA NA | NA | NA
(ng m®) SEARCH 1.0 0.6 0.1 -37.5 78.1 1.0 0.7 0.1 -29/5 8713 N/A  /AN| N/A N/A N/A
oc IMPROVE 11 2.0 0.4 80.8| 1026 10 1.9 0.3 887 1183 NJA J/AN| NA | NA | NA
(ng m®) SEARCH 2.1 2.8 0.2 330 857 2.2 2.8 0.2 240 795 NA O NA NA | NA | NA
IMPROVE 1.3 2.3 0.4 725|  95.0 13 2.3 0.3 750 1044 NIA AN| NA | NA | NA
(pgfn,a) STN 26 26 0.4 15| 445 25 26 06 54 550 NA  NA JAN| NA | NA
SEARCH 2.2 3.2 0.3 42| 872 2.8 3.4 0.2 205 736 NA O NA NA | NA | NA
Column CO
(10" molec. MOPITT 2.3 1.2 0.3 -50.7 50.7 2.3 1.2 0.1 -4814 484 23 21 01 -48.2 48.2
cm?)
Column NO;
(10° molec. oMI 2.7 2.7 0.9 1.0 20.1 23 2.9 0.9 262 328 25 2|3 07 79 | 327
cm®)
CO'L(‘B“S)SOZ oMl 0.39 0.09 0.5 772|775 0.41  0.09 0.5 771 773 .400 | o011 05 732|737
Column
HCHO (10" oMI 5.4 2.6 00 | -51.5| 516 6.3 2.6 01 590 5900 NA /AN| NA | NA | NA
molec. cm?)
Co'(‘fD"L‘J’; Os oM 257 | 358 | -02| 393| 424| 271 353 02 299 3d6 512| 364 | -04| 451| 479
AOD MODIS 0.1 0.1 0.8 594 | 622 0.1 0.1 0.7 957 958 ol o1 0.7 750 | 765

! Data pairs only include simulated and observed dating May, June, and July in 2014 because sfdbsimulated data in August and September, 2014.
2 Mean Obs: Mean observed data; Mean Sim: Mean atetibata; Corr: Correlation coefficient; NMB: Nariimed mean bias; NME: Normalized mean error;
N/A: Data not available.
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Table3. Discrete evaluation of F-FAQF results for (; andPMj s prediction:

3

NE US 8/5-29,2002 1.4 14.6 2.2 18.0 MAQSIP-RT KAO05

NE US 8/5-29,2002 9.5 213 15.0 25.8 MM5/Chem KA05

NE US 8/5-29,2002 3.2 19.1 5.1 23.4 Hysplit/CheM asA

E US 7/1-8/15,2004 4.3-85 14.8-16.9 7.0-16.4 253 Eta/CMAQ YU07

SE US 5/1-9/30,2009 4.5 16.8 9.5 26.7 WRF/Chem-MADR MT11

SE US 5/1-9/30,2009-2011 -3.0-4.6 134-170 -55-9.6 19.9-26.7 WRF/Chem-MADRID

SE US 5/1-9/30,2009-2011 -3.0-7.3 11.6-17.0 -55-155 17.6-27.4 WRF/Chem-MADRID VAL

SE US 12/1-02/28,2009-2012 -4.6—--2.2 8.0-9.7 -11.9--6.0 16.1-19.0 WRF/Chem-MADRID VA

SE US 12/1-02/28,2009-2012 -5.6 -3.7  7.6-10.6 -13.8-10.8 15.0-20.3 WRF/Chem-MADRID VAL

SE US 5/1-9/30,2012-2014 -0.1-69 140-151 0-15.0 22.0-26.0 WRF/Chem-MADRID This work®

SE US 5/1-9/30,2012-2014 -1.5-8.0 12.1-15.9 -3.0-17.0 19.0-27.0 WRF/Chem-MADRID This work

SE US 12/1-02/28,2012-2015 -6.6--3.C 9.7-11.1 -18.1--8.1 17.5-23.4 WRF/Chem-MADRID SThre

SE US 12/1-02/28,2012-2015 6.2--4.2 8.0-11.1 -18.1--6.5 16.8-23.4 WRF/Chem-MADRID STiwrk

Maximum 8-hr average Oy

NE US 8/5-29,2002 8.3 18.2 15.1 25.4 MAQSIP-RT KBAO

NE US 8/5-29,2002 2.8 13.0 5.0 18.6 MM5/Chem KA05

NE US 8/5-29,2002 -1.2 15.8 2.1 22.5 Hysplit/Chem KAO05

NE US 6/1-9/30,2004 10.2 15.7 22.8 28.1 Eta/CMAQ 08D

E US 7/1-8/15,2004 6.5-10.4 13.9-16.6 11.9-22.6 7-P8.8 Eta/CMAQ YUO7

NY 7/1-9/30,2004 6.5 12.8 — — Eta/CMAQ HOO07

NY 1/1-3/31,2005 1.4 8.7 — — Eta/CMAQ HOO07

NY 6/1-9/30,2005 4.7 13.0 — — Eta/CMAQ HOO07

NE US 7/14-8/17,2004 3.4-14.3 11.6-20.9 — — WRF/chem MKO07

and 17.0 232 — — CHRONOS MKO07

SE CA 5.9 16.2 — — AURAMS MKO07
26.4 310 — — STEM-2K3 MKO07
134 17.9 — — ET/CMAQ MKO7

E US 6/1-9/30,2005 10.9 16.3 224 27.1 WRF-NMM/CMAQ  EDO09

E US 6/1-9/30,2006 10.5 15.6 25.2 304 WRF-NMM/CMAQ EDO09

E US 6/1-9/30,2007 7.9 145 16.5 24.1 WRF-NMM/CMAQ  EDO09

SE US 5/1-9/30, 2009 35 13.6 8.3 25.0 WRF/Chen-MADRID MT11

SE US 5/1-9/30,2009-2011 -18-3.6 11.7-13.7 -37-85 19.6-25.0 WRF/Chem-MADRID ~ YA14®

SE US 5/1-9/30,2009-2011 -22-6.1 105-13.9 -45-146 17.8-26.1 WRF/Chem-MADRID  YA14°

SE US 12/1-02/28,2009-2012 -4.9-2.0 8.1-12.2 -13.5--5.8 16.9-33.8 WRF/Chem-MADRID ~ A1¥®

SE US 12/1-02/28,2009-2012 -4.9-2.0 6.7-12.2 -13.5--0.3 16.9-21.5 WRF/Chem-MADRID VAL

SE US 5/1-9/30,2012-2014 0.2-6.9 13.2-142 0.0-17.0 22.0-27.0 WRF/Chem-MADRID This whrk

SE US 5/1-9/30,2012-2014 -0.8-8.8 10.3-151 -2.0-22.0 21.0-29.0 WRF/Chem-MADRID This work

SE U< 12/1-02/28,201-201¢ -6.2—--3.1 11.(-17.2 -17.7--9.1 19.6-24.€ WRF/Chen-MADRID This worl®

SE US 12/1-02/28,201-201¢ -6.2--05 6.1-17.C -17.7—--1.7 18.2-25.2 WRF/Chen-MADRID This wok®

24-hr average PM s

NY 7/1-9/30,2004 5.4 13.2 — — Eta/CMAQ HOO07

NY 1/1-3/31,2005 6.2 145 — — Eta/CMAQ HOO07

NY 6/1-7/31,2005 4.4 13.6 — — Eta/CMAQ HOO07

PN 8/1-11/30,2004 21-22 — 17-32 70-81 MM5/CMAQ CHO08

E US 7/14-8/18,2004 -3.2 8.8 -21.0 41.2 Eta/CMAQ YU08

E Texas 8/31-10/12,2006 -1.3 55 — — 7-model ensembf® DJ10

NA Summer 2008 -2.08 12.8 — — GEM-CHRONOS MAO09

NA Winter 2008 0.86 14.1 — — GEM-CHRONOS MAOQ9

NA Summer 2009 -0.70 129 — — GEM-CHRONOS MAO09

NA Summer 2008 0.69 135 — — GEM-MACH15 MAOQ9

NA Winter 2008 -0.18 159 — — GEM-MACH15 MAO09

NA Summer 2009 2.08 13.6 — — GEM-MACH15 MAO09

SEUS  5/1-9/30,2009 -0.6 5.9 -5.6 37.0 WRF/Chem-MADRID MT11

SE US 5/1-9/30,2009-2011 -1.3--0.6 5.9-87 -10.1--5.2 36.7 — 38.9 WRF/Chem-MADRID YA14°

SE US 5/1-9/30,2009-2011 -13-36 4.8-20.1 -10.1-343 352-65.5 WRF/Chem-MADRID YA14°

SE US 12/1-02/28,2009-2012 -1.1-0.2 54-6.8 -10.2-14 399-41.6 WRF/Chem-MADRID Al

SE US 12/1-02/28,2009-2012 -2.9-3.1 49-93 -20.6 — 36.6 0.6 -65.5 WRF/Chem-MADRID  A1¥°

SE US 5/1-9/30,2012-2014 -05-14 5.1-57 -4.0-15.0 36.0-40.0 WRF/Chem-MADRID This whrk

SE US 5/1-9/30,2012-2014 -05-4.8 3.8-10.8 2.0-53.0 33.0-74.0 WRF/Chem-MADRID This work

SE US 12/1-02/28,201-201¢ 0.2-0.8 5.5-6.1 0.8-8.2 42.6-47.4 WRF/Chen-MADRID This werk®

SE U< 12/1-02/28,201-201¢ 0.1-5.2  4.¢-10.F 4.9-68.4 37.3—-89.C WRF/Chen-MADRID This worl®

n

w

.MB: Mean Bias; RMSE: Root Mean Square Error; NMRBirMalized Mean Bias; NME: Normalized Mean Error. 3&
Southeastern U.S.; E US: Eastern U.S., NE US: Madtern U.S.; SE CA: southeastern Canada; PN:i®Blcfthwest; NY:
New York State; E Texas: eastern Texas; NA: Nonthefica The unit for MB and RSME are ppb fog@ndpg m? for PM, .
Superscript a: the 7 models include: WRF/Chef@72km), WRF/Chem-2 (12-km), CHRONOS, AURAMS, STEM3,
BAMS (15-km), and NMM/CMAQ); b: statistics based evaluation against AirNow; c: statistics based eal@ation against
all datasets.

MT11: Chuang et al. (2011); KAO5: Kang et aD@8); EDO6: Eder et al. (2006); HOO7: Hogrefe e(2007); MKO7; McKeen
et al. (2007); YUO7: Yu et al. (2007); CHO8: Chetral. (2008); MA09: Makar et al., 2009; ED09: Edeal. (2009); YUO08: Yu
et al. (2008); DJ10: Djalalova et al. (2010); YA¥ahya et al. (2014).
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Table 4. Categorical evaluation of RT-AQF resufjaiast AirNow for Q and PM s predictions.

Area Period A Csl POD B FAR Model Reference
(%) (%) (%) (%)
Maximum 1-hr average O;
NE US 8/5-29,2002 99.2 9.7 14.0 0.6 76 MAQSIP-RT 0RA
NE US 8/5-29,2002 97.0 9.8 29.8 2.3 87.2 MM5/Chem AOK
NE US 8/5-29,2002 99.0 8.3 18.2 14 86.7 HyspligRah KAO05
SE US 5/1-9/30,2009 94.0 5.2 31.3 5.3 94.1 WRF/CN&DRID MT11
SE US 5/1-9/30,2009-2011 94.6-96 5.2-13.8 17-31.3 .6-5(8 67-94.1 WRF/Chem-MADRID YAl4
SE US 12/1-02/28,2009-2012 100 0 0 0 0 WRF/Chem-RAD YA14
SE US 5/1-9/30,2012-2014 94.2-97.7 3.6-155 18.8-300.9-7.9 715-96.1 WRF/Chem-MADRID This work
SE US 12/1-02/28,2012-2015 100 0 0 0 0 WRF/Chem-RED This work
Maximum 8-hr average O;
NE US 8/1-10,2001 80.0 34.0 49.0 1.1 13.0 MM5/MARSRT MCO04
NE US. 8/5-29,2002 85.8 18.1 26.7 0.7 64.0 MAQSIP-R KAO05
NE US 8/5-29,2002 76.2 17.6 36.4 14 74.6 MM5/Chem KAO05
NE US 8/5-29,2002 89.5 5.8 7.1 0.3 76.3 Hyspliti@he KAO5
NE US 6/1-9/30,2004 98.9 14.2 41.0 2.3 82.1 Eta/CQMA EDO6
NY 7/1-9/30,2004 84.0-95.2 31.4-53.2 46.5-84.8— 32.9-55.2 Eta/CMAQ HOO07
1/1-3/31, 6/1-9/30,2005 96.1-99.8 0.0-29.0 0.858. — 36.7-82.5 Eta/lCMAQ HOO07
NE US 8/12,2005 91.6 23.4 31.3 0.7 51.6 Eta/CMAQ 08E
E US 8/12,2005 90.4 24.3 375 0.9 59.1 Eta/CMAQ 2EO0
CONUS 8/12,2005 87.4 26.0 54.2 1.6 66.7 Eta/CMAQ 0&E
SE US 5/1-9/30, 2009 85.6 14.0 33.3 1.7 80.6 WRENMADRID MT11
CONUS 6/1-8/31,2010 86-91 0.17-0.21 0.71-0.76 0.77-0.82WRF-NMM/CMAQ CH13
CONUS 01/01-12/31,2010 93-96 0.17-0.21 0.64-0.67 0.76-0.81WRF-NMM/CMAQ CH13
SE US 5/1-9/30,2009-2011 81.4-85.7 14-24.9 29.1-33.3 0.6-1.7 48.6-80.8VRF/Chem-MADRID YA14
SE US 12/1-02/28,2009-2012 98.7-100 0 0 0 N/A WRF/Chem-MADRID YAl4
SE US 5/1-9/30,2012-2014 80.2-85.3  9.9-25.3 26.6-46.7 0.8-4.2 54.9-88.9VRF/Chem-MADRID This work
SE US 12/1-02/28,2012-2015 98.7-99.2 0 0 0 N/A WRF/Chem-MADRID This work
24-hr average PM s
NY 7/1-9/30,2004 60.8-89.7 22.5-53.7 24.3-90.9— 25.0-55.0 Eta/CMAG HOO07
1/1-3/31, 6/1-7/31,2005 91.4-99.7 0-3.6 0-44.7 — N/A?, Eta/CMAQ HOO07
96.2-100
E Texas 8/31-10/12,2006 — 0.0-8.0 0.0-14 — 80-100 7-model ensembf DJ10
SE US 5/1-9/30,2009 76.2 22.3 315 0.7 56.6 WRRIENADRID MT11
SE US 5/1-9/30,2009-2011 70.7-76.2  22.3-27.9 31.5-36 0.6-0.7 44.6-56. WRF/Chem-MADRID YA14
SE US 12/1-02/28,2009-2012 82.2-85.9 14.8-22.2 27.7-383 0.7-1.2  61.3-76.8VRF/Chem-MADRID YA14
SE US 5/1-9/30,2012-2014 775-83.2 10.3-21.3 15.3-40.1 0.6-1.3 68.3-75.9VRF/Chem-MADRID This work
SE US 12/1-02/28,2012-2015 83.5-85.3 14.7-17.1 255-31.8 1.0-1.2 72.1-74 WRF/Chem-MADRID This work

1. A: Accuracy; CSI: Critical Success index; POD: Rabitity Of Detection; B: Bias; FAR: False Alarm RatSE US:
Southeastern U.S.; NE US: Northeastern U.S.; EddStern U.S.; E Texas: eastern Texas; NY: New ‘Gtake,
CONUS: continental U.S.

2. Superscript a: An FAR of N/A indicates that no eed&nces were predicted by the AQF model; b: thersenodels
include: WRF/chem-2 (27-km), WRF/chem-2 (12-km),RZBNOS, AURAMS, STEM-2K3, BAMS (15-km), and
NMM/CMAQ;

3.MT11: Chuang et al. (2011); MC04: McHenry et aD@2); KAO5: Kang et al. (2005); ED06: Eder et 200¢6); HOO07:
Hogrefe et al. (2007); LEO8: Lee et al. (2008); O.Jjalalova et al. (2010); CH13: Chai et al. (2pI3A14: Yahya et
al. (2014).
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List of Figure Captions

Figure 1. Discrete evaluation of the maximum 1+at 8-hr Q and 24-hr average PMfor (a)
O3 seasons and (b) winters during 2009-2015.

Figure 2. Spatial distributions of maximum 1-hy &d 8-hr @ during the @seasons and
average 24-hr Phkconcentrations during thes@nd winter seasons during 2012-2015. The
observations are symbolled as circles, they arntélom AIRNow, AIRS-AQS, CASTNET,
and SEARCH for @and from AIRNow, IMPROVE, STN, and SEARCH for M

Figure 3. Time series of the observed and foredassximum 1-hr @and 8-hr Q
concentrations for @seasons during 2012-2015. The observations aea fam
AIRNow.

Figure 4. Time series of the average 24-hr avelPddesconcentrations for (a) O
seasons and (b) winters during 2012-20H= observations are taken from AIRNow.

Figure 5. Categorical evaluation of the maximunr &id 8-hr Q and 24-hr average PMfor
(a) G; seasons and (b) winters during 2009-2015.

Figure 6. Spatial distributions of satellite-dedvend simulated column NOTOR, and AOD
during (a) the 2012 £season (rows 1 and 2), and (b) the winter of 22023 (rows 3 and
4).

Figure 7. Comparison of CO spatial distribution&irg. 2012: (a) satellite observation from
MOPPIT, (b) baseline simulation, and (c) sensiyigiimulation.

Figure 8. Comparison of TOR spatial distributiom®iec. 2012: (a) satellite observation from
OMI, (b) baseline simulation, and (c) sensitiviljalation.

Figure 9. Changes in observed and forecasted €2jRand WS10 (relative to 2009) and

SWDOWN, LWDOWN, and CF (relative to 2011) duringl®82015.
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Figure 10. Changes in observed and forecastedceu@igand PM s concentrations (relative to

2009) and column CO, NOSO,, TOR, AOD (relative to 2011) during 2010-2015.
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Figure 1. Discrete evaluation of the maximum 1-hr and 8-hr O; and 24-hr average PM, 5 for (a) O; seasons

and (b) winters during 2009-2015.
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Figure 2. Spatid distributions of maximum 1-hr Oz and 8-hr O5 during the O; seasons and average 24-hr PM ;5
concentrations during the Os; and winter seasons during 2012-2015. The observations are symbolled as circles, they are
taken from AIRNow, AIRS-AQS, CASTNET, and SEARCH for O; and from AIRNow, IMPROVE, STN, and SEARCH
for PM 25.
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Figure 3. Time series of the observed and forecasted maximum 1-hr O; and 8-hr O; concentrations for Oz seasons during 2012-2015. The
observations are taken from AIRNow.
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Figure 4. Time series of the average 24-hr average PM s concentrations for (&) Oz seasons and (b) winters during 2012-2015. The
observations are taken from AIRNow.
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Figure 5. Categorica evaluation of the maximum 1-hr and 8-hr O3 and 24-hr average PM 5 for (a) Os seasons
and (b) winters during 2009-2015.
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Figure 6. Spatia distributions of satellite-derived and simulated column NO,, TOR, and AOD during
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(a) the 2012 O3 season (rows 1 and 2), and (b) the winter of 2012-2013 (rows 3 and 4).
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Figure 7. Comparison of CO spatial distributions in August. 2012: (a) satellite observation from
OMI, (b) baseline simulation, and (c) sensitivity simulation.
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Figure 8. Comparison of TOR spatial distributionsin Dec. 2012: (a) satellite observation from
OMI, (b) baseline simulation, and (c) sensitivity simulation.
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Figure 9. Changesin observed and forecasted T2, Precip, and WS10 (relative to 2009) and SWDOWN,
LWDOWN, and CF (relative to 2011) during 2010-2015.
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Figure 10. Changesin observed and forecasted surface O; and PM, 5 concentrations (relative to
2009) and column CO, NO,, SO,, TOR, AOD (relative to 2011) during 2010-2015.



Highlights:

(1) A comprehensive evaluation of multi-year forecasts using surface and satellite data
(2) The model shows good skills for multi-year trends and inter-seasonal variability at surface
(3) Satellite-constrained boundary conditions can improve forecasts of column variables.





